
Algorithms for the
Satisfiability Problem

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Herrn Dipl.-Inf. Daniel Rolf

geboren am 5.1.1979 in Neuruppin

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Christoph Markschies
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Wolfgang Coy
Gutachter:

1. Prof. Dr. Martin Grohe
2. Prof. Dr. Stephan Kreutzer
3. Prof. Dr. Walter Kern

eingereicht am: 30. Mai 2006
Tag der mündlichen Prüfung: 17. November 2006

Abstract

This work deals with worst-case algorithms for the satisfiability problem regarding
boolean formulas in conjunctive normal form. The main part of this work consists
of the analysis of the running time of three different algorithms, two for 3-SAT
and one for Unique-k-SAT.

Research on the satisfiability problem has made reasonable progress during the
last years. After the introduction in Chapter 1, we will study some interesting
algorithms and their running time bounds in Chapter 2.

In Chapter 3, we establish a randomized algorithm that finds a satisfying as-
signment for a satisfiable 3-CNF formula G on n variables in O (1.32793n) expected
running time. The algorithm is based on the analysis of so-called strings, which
are sequences of clauses of size three, whereby non-succeeding clauses do not share
a variable, and succeeding clauses share one or two variables. If there are not many
strings, it is likely that we already encounter a solution of G while searching for
strings. In 1999, Schöning proved a bound of O (1.3334n) for 3-SAT. If there are
many strings, we use them to improve the running time of this algorithm.

Furthermore, in Chapter 4, we derandomize the PPSZ algorithm for Unique-
k-SAT. The PPSZ algorithm presented by Paturi, Pudlak, Saks, and Zane in 1998
has the feature that the solution of a uniquely satisfiable 3-CNF formula can be
found in expected running time at most O (1.3071n). In general, we will obtain
a derandomized version of the algorithm for Unique-k-SAT that has essentially
the same bound as the randomized version. This settles the currently best known
deterministic worst-case bound for the Unique-k-SAT problem. We apply the
‘Method of Small Sample Spaces’ in order to derandomize the algorithm.

Finally, in Chapter 5, we improve the bound for the algorithm of Iwama and
Tamaki to get the currently best known randomized worst-case bound for the 3-
SAT problem of O (1.32216n). In 2003 Iwama and Tamaki combined Schöning’s
and the PPSZ algorithm to yield an O (1.3238n) bound. We tweak the bound for
the PPSZ algorithm to get a slightly better contribution to the combined algo-
rithm.

Keywords:
Satisfiability problem, k-SAT, algorithms, worst case bounds

Zusammenfassung

Diese Arbeit befasst sich mit Worst-Case-Algorithmen für das Erfüllbarkeitspro-
blem boolescher Ausdrücke in konjunktiver Normalform. Im Wesentlichen betrach-
ten wir Laufzeitschranken drei verschiedener Algorithmen, zwei für 3-SAT und
einen für Unique-k-SAT.

In der Forschung zum Erfüllbarkeitsproblem gab es in den letzten Jahren eine
Reihe von Fortschritten. Nach der Einleitung in Kapitel 1 werden in Kapitel 2 ei-
nige interessante Algorithmen für das k-SAT-Problem und ihre Laufzeitschranken
behandelt.

In Kapitel 3 entwickeln wir einen randomisierten Algorithmus, der eine Lösung
eines erfüllbaren 3-CNF-Ausdrucks G mit n Variablen mit einer erwarteten Lauf-
zeit von O (1.32793n) findet. Der Algorithmus basiert auf der Analyse sogenannter
Strings, welche Sequenzen von Klauseln der Länge drei sind. Dabei dürfen aufein-
ander folgende Klauseln keine Variablen und nicht aufeinander folgende Klauseln
ein oder zwei Variablen gemeinsam haben. Gibt es wenige Strings, so treffen wir
wahrscheinlich bereits während der String-Suche auf eine Lösung von G. 1999 ent-
warf Schöning einen Algorithmus mit einer Schranke von O (1.3334n) für 3-SAT.
Viele Strings erlauben es, die die Laufzeit dieses Algorithmusses zu verbessern.

Weiterhin werden wir in Kapitel 4 den PPSZ-Algorithmus für Unique-k-SAT
derandomisieren. Der 1998 von Paturi, Pudlak, Saks und Zane vorgestellte PPSZ-
Algorithmus hat die besondere Eigenschaft, dass die Lösung eines eindeutig er-
füllbaren 3-CNF-Ausdrucks in höchstens O (1.3071n) erwarteter Laufzeit gefun-
den wird. Die derandomisierte Variante des Algorithmusses für Unique-k-SAT hat
im Wesentlichen die gleiche Laufzeitschranke wie die randomisierte Variante. Wir
erreichen damit die momentan beste deterministische Worst-Case-Schranke für
Unique-k-SAT. Um den Algorithmus zu derandomisieren, wenden wir die ‚‚Metho-
de der kleinen Zufallsräume“ an.

Schließlich verbessern wir in Kapitel 5 die Schranke für den Algorithmus von
Iwama und Tamaki. 2003 kombinierten Iwama und Tamaki den PPSZ-Algorithmus
mit Schönigs Algorithmus und konnten eine Schranke von O (1.3238n) bewiesen.
Um seinen Beitrag zum kombinierten Algorithmus zu steigern, justieren wir die
Schranke des PPSZ-Algorithmusses. Damit erhalten wir die momentan beste ran-
domisierte Worst-Case-Schranke für das 3-SAT-Problem von O (1.32216n).

Schlagwörter:
Erfüllbarkeitsproblem, k-SAT, Algorithmen, obere Schranken

Acknowledgments

Firstly, I would like to thank my supervisor, Martin Grohe, for listening to, reading,
and verifying my ideas. I enjoyed the warm environment he and his/my colleagues
created at the chair of Logic in Computer Science.

Moreover, I thank Deryk Osthus for introducing the SAT-topic to me about
four years ago and for supervising my Diploma Thesis and the first part of my
doctoral research.

To my dear pals, my colleagues at the university and at work, my family, and
my great parents-in-law: Thank you guys, thank you!

But most of all, I am in great debt of gratitude to my beloved wife Linda, who
has always supported me with her love and friendship, and who has given birth to
our little daughter, Isabell Maja, in this May.

Contents

1 Introduction 1
1.1 Preliminaries . 1
1.2 The Satisfiability Problem . 2
1.3 How Hard Is k-SAT? . 3
1.4 Record Breaking . 4
1.5 Further Research . 6

2 Algorithms for k-SAT 7
2.1 Introduction . 7
2.2 Davis-Putnam Algorithms . 7

2.2.1 Monien-Speckenmeyer Algorithm 8
2.2.2 The Algorithm of Paturi, Pudlak, and Zane 9
2.2.3 The Algorithm of Paturi, Pudlak, Saks, and Zane 11

2.3 Local-Search Algorithms . 12
2.3.1 Papadimitriou’s Algorithm 12
2.3.2 Schöning’s Algorithm . 13
2.3.3 Deterministic Local Search 15

2.4 Davis-Putnam and Local Search . 17
2.4.1 Schöning’s Algorithm and Reduction to 2-SAT 17
2.4.2 The Algorithm of Iwama and Tamaki 18

3 Improving Randomized Local Search by Initializing Strings of 3-
Clauses 21
3.1 Introduction . 21
3.2 Combining Algorithm SCH with a Randomized Solver 22

Contents

3.3 Unit Clause Propagation . 29
3.4 Randomized Solver Using Strings 32
3.5 Local Scheme for Algorithm Strings 39

4 Derandomization of PPSZ for Unique-k-SAT 45
4.1 Introduction . 45
4.2 Method of Small Sample Spaces . 46
4.3 Algorithm PPSZ Derandomized . 49
4.4 Analysis of Algorithm dPPSZ . 50

4.4.1 Deterministic Bounds for Unique-k-SAT 50
4.4.2 Small Probability Space for Variable Ordering 52
4.4.3 Admissible Trees . 54
4.4.4 Critical Clause Trees . 58

4.5 Conclusion . 60

5 Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT 61
5.1 Introduction . 61
5.2 The Analysis . 62

5.2.1 Main Result . 62
5.2.2 Disassembling COMB . 62
5.2.3 Bound for SCH . 65
5.2.4 Bound for PPSZ . 65
5.2.5 Reassembling COMB . 67
5.2.6 Proof of the PPSZ Bound 69
5.2.7 Optimized Nice Distributions for 3-SAT 71

x

List of Figures

1.1 Running Time Bounds for n variables 5

2.1 Trivial Davis-Putnam Algorithm . 7
2.2 Monien-Speckenmeyer Algorithm 9
2.3 Algorithm of Paturi, Pudlak, and Zane 10
2.4 Algorithm of Paturi, Pudlak, Saks, and Zane 11
2.5 Papadimitriou’s Algorithm . 12
2.6 Schöning’s Algorithm . 13
2.7 Search a Hamming Ball . 15
2.8 Algorithm of Hofmeister, Schöning, Schuler, and Watanabe 17
2.9 Algorithm of Iwama and Tamaki 18

3.1 Running Schöning’s Algorithm with Better Initial Assignments . . . 25
3.2 Combine Ψ-Solver and Schöning’s Algorithm 27
3.3 Unit-Clause Propagation . 30
3.4 Clean, Simplify, and Clean . 32
3.5 Finish the Current String . 33
3.6 Extend the Current String . 33
3.7 Randomized Solver Using Strings 34
3.8 Choose from Two Sets of Assignments 35
3.9 Choose from Three Sets of Assignments 36
3.10 Choose from Five Sets of Assignments 38

4.1 Trivial Algorithm for Max-k-SAT 47
4.2 Deterministic Algorithm for Max-k-SAT 49
4.3 Derandomized Algorithm of Paturi, Pudlak, Saks, and Zane 49

List of Figures

4.4 Admissible Tree with a Cut . 55
4.5 Critical Clause Tree for v . 59

5.1 Basis c for Running Time O (cn) of SCH 66
5.2 Basis c for Running Time O (cn) of PPSZ 67
5.3 Basis c for Running Times O (cn) of PPSZ and SCH 68
5.4 H(r)2 and R3(r) . 74
5.5 H(r) and R3(r)

1/2 . 75

xii

List of Tables

1.1 Running Time Bounds O (cn) for 3-SAT on n Variables 4

3.1 Forced Stop Types . 43
3.2 Forced Stop Types, continued . 44
3.3 Automatic Stop Types . 44

Chapter 1

Introduction

1.1 Preliminaries

Firstly, we make some common definitions. An assignment β to a set of variables V

maps each variable in V to 0 or 1. For two assignments β1, β2 to V , let dist(β1, β2)

denote the hamming distance of β1 and β2, i.e. the number of variables in V for
which β1 and β2 take different values. A literal is a variable or its negation. Such
a literal l is satisfied by β when it is true that β(l) = 1 if l is not negated resp.
β(l) = 0 if l is negated. A clause is a set of literals based on different variables.
A clause is satisfied by some assignment β if at least one literal is satisfied by β.
Moreover, a formula in conjunctive normal form (CNF) is a set of clauses, which
is satisfied by β if each clause is satisfied by β. A k-clause is a clause of size k,
and a k-CNF formula is a set of clauses where each has size k. Also, an 1-clause
is known as unit clause, whereas the empty clause is denoted by ⊥, which is not
satisfiable. Two clauses are called independent if they do not have any variables
in common. For a set of clauses G, let vars(G) be the set of variables occurring
in G. Finally, let nG stand for |vars(G)|. Note that an empty k-CNF formula is
satisfiable, but a k-CNF formula containing ⊥ is not satisfiable.

We will not consider polynomial factors in complexity calculations because we
always expect an exponential expression which outweighs all polynomials for large
problems. Because the number of clauses is O

(
nk

G

)
, polynomials that depend on

the number of clauses can also be replaced by some polynomial in nG.

Chapter 1. Introduction

For a CNF formula G and a literal l, we denote with G|l the formula obtained
by making l true in G, i.e. we remove all clauses that contain l and remove l from
all clauses that contain it. Let L = {l1, .., ls} be a finite set of literals of distinct
variables. Then G|L is defined as G|l1|...|ls . Clearly, a satisfying assignment for
G|L can be extended to a satisfying assignment for G by assigning 1 to all literals
in L.

A clause pair (C1, C2) is a resolvent pair if they have only one variable v in
common whereby v ∈ C1 and v ∈ C2. Their resolvent R(C1, C2) is the clause
(C1 − v) ∪ (C2 − v). Because any satisfying assignment for C1 and C2 must also
satisfy R(C1, C2), adding R(C1, C2) to a CNF formula does not change its set of
satisfying assignments.

s-bounded resolution means to add to G all resolvent pairs of clauses in G where
the size of the resolvent is at most s, over and over again, until there is nothing
more to do. Note that if s is a constant, this has polynomial time and space
complexity in nG.

1.2 The Satisfiability Problem

In general, the satisfiability problem (SAT) asks whether a boolean expression is
satisfiable or not. A boolean expression is made of variables, negations, conjunc-
tions, disjunctions, and parentheses. The problem of deciding satisfiability of a
boolean expression in conjunctive normal form is called the CNF-SAT problem.
CNF-SAT was the first problem that had been shown to be NP-complete. This
was done by Cook in 1971, cf. [5].

To decide whether a k-CNF formula G has a satisfying assignment is commonly
known as the k-SAT problem, which is NP-complete for k > 2 because every
CNF formula can be reduced to a 3-CNF formula in polynomial time. Hence if
NP 6= P holds (which is widely assumed), there is no hope to find a polynomial
time algorithm for the k-SAT problem for k > 2. While this may be true, 2-SAT
can surely be solved in polynomial time.

A closely related problem of particular interest is the Unique-k-SAT problem
– decide whether a k-CNF formula G with at most one satisfying assignment is
satisfiable –, which is also NP-complete for k > 2.

2

1.3. How Hard Is k-SAT?

1.3 How Hard Is k-SAT?

Let us define the following sequence:

sk = inf
{

c
∣∣∣there is an O (2c·n) randomized algorithm that solves
k-SAT on n variables

}
Moreover, let s∞ be the limit of sk for k tending to infinity. Little is known

about sk; it is not even known whether s∞ < 1 holds or whether there is some k > 2

with sk > 0. s∞ = 1 would mean that for every c < 1, there is some k so that the
best algorithm for k-SAT has worst case running time Θ (2c·n), i.e. the algorithms
are doomed to be only ‘slightly’ faster than theO (2n) naive enumeration approach.

The Exponential-Time Hypothesis (ETH) for k-SAT asserts that sk > 0 is true
for every k > 2, meaning that k-SAT cannot be solved in sub-exponential time in
the worst case for k > 2.

In [7], Impagliazzo and Paturi could prove the following theorem:

Theorem 1.1. There is some constant d > 0 so that sk ≤ s∞(1− d/k) is true.

Hence sk is an infinitely often increasing sequence. Furthermore, the authors
also conjectured that sk is strictly monotone increasing.

Analogously to sk, we define σk for Unique-k-SAT and σ∞ to be the limit of
σk for k tending to infinity. Because every instance of the Unique-k-SAT problem
is also an instance of the k-SAT problem, σk ≤ sk holds. But, what is really
harder: To find a satisfying assignment for a k-CNF with a single solution or for a
k-CNF that has many solutions? A partial answer was given in [4], where Calabro,
Impagliazzo, Kabanets, and Paturi proved the following relationship:

Theorem 1.2. It is true that sk ≤ σk +O
(
(ln2 k)/k

)
. Thus s∞ = σ∞ also holds.

Roughly speaking, Unique-k-SAT can be only a little bit easier than k-SAT for
large k. In addition, the authors conjectured that sk = σk holds for all k ≥ 3 and
even expressed their ‘hope’ that it could be possible to prove that finding a solution
of a formula with many satisfying assignments is easier than for a formula with
few satisfying assignments. In contrast, the currently best known bound for 3-SAT
depends on the number of solutions, being worst when there are about 20.028·nG

satisfying assignments for a 3-CNF formula G, cf. Figure 5.3 in Section 5.2.5.

3

Chapter 1. Introduction

1.4 Record Breaking

c Type Section Year Reference
1.861 det. Section 2.2.2 1997 [12]
1.849 det. 1998 [16]
1.618 det. Section 2.2.1 1985 [10]
1.588 rand. Section 2.2.2 1997 [12]
1.579 det. Section 2.2.1 1993 [21]
1.505 det. Section 2.2.1 1999 [9]
1.5 rand. 1999 [24]
1.497 det. Section 2.2.1 1996 [22]
1.481 det. Section 2.3.3 2002 [6]
1.473 det. Section 2.3.3 2004 [3]
1.363 rand. Section 2.2.3 1998 [13]
1.334 rand. Section 2.3.2 1999 [23]
1.3302 rand. Section 2.4.1 2002 [25]
1.32971 rand. Section 2.4.1 2003 [17]
1.329 rand. Section 2.4.1 2003 [2]
1.32793 rand. Chapter 3 2003 [18]
1.3238 rand. Section 2.4.2 2003 [8]
1.32216 rand. Chapter 5 2005 [20]

Table 1.1: Running Time Bounds O (cn) for 3-SAT on n Variables

Recall that already 3-SAT is NP-complete, and since k-SAT is ‘getting harder’
with increasing k, the best bounds are expected for k = 3. The evolution of
running time bounds for algorithms for 3-SAT on n variables in terms of O (cn) is
given in Table 1.1. Algorithms that are mentioned in more detail in this work are
found where column ‘Section’ states. Bounds in bold lines are due to the author
of this work.

The proofs of the O (1.32793n) and O (1.32216n) bounds are results of this
work, presented in Chapter 3 resp. Chapter 5.

The graphs in Figure 1.1 show cn for every c in Table 1.1, i.e. they give a rough
estimate of these bounds with respect to the number of variables.

Assuming that the bounds were tight and sub-exponential factors in O (cn)

neglectable, we can compare the performance of the trivial O (2n) algorithm and
the best known, O (1.32216n) algorithm for 3-SAT. Then the O (1.32216n) algo-

4

1.4. Record Breaking

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30 35 40

n

Figure 1.1: Running Time Bounds for n variables

rithm would solve 3-SAT instances with 2.5 times the number of variables in the
same time than the trivial algorithm could. Note that doubling the speed of com-
puters would yield only a summand to the number of variables, i.e. if the trivial
algorithm could process n variables, a computer two times faster would process
n + 1 variables in the same time. In contrast, the gain by providing exponentially
faster algorithms is much bigger than what which we gain by Moore’s Law from
year-to-year!

A slightly different situation occurs for Unique-k-SAT. In [13], Paturi, Pudlak,
Saks, and Zane proved that for a uniquely satisfiable 3-CNF formula G, the solution
can be found in O (1.3071nG) expected running time at most. This is the best
randomized bound known for Unique-3-SAT. But paradoxically, the bound gets
worse when the number of solutions increases. Alas, for the general 3-SAT and
4-SAT case on n variables, this algorithm achieves expected running time bounds
of O (1.362n) resp. O (1.476n) only. However, in [19], the author showed that this
algorithm can be derandomized yielding O (1.3071n) deterministic running time for
Unique-3-SAT on n variables. Essentially, the bounds for Unique-k-SAT obtained
by the derandomization are (almost) the same bound as for the randomized version.
Thus making them the best known deterministic bound for Unique-k-SAT. The
proof is a result of this work and presented in Chapter 4.

5

Chapter 1. Introduction

1.5 Further Research

At present, we have two different approaches rivaling for k-SAT. The deterministic
algorithms are based entirely on local search, whereas the randomized ones use a
combination of local search and unit clause propagation after bounded resolution.
The currently known best deterministic algorithm for Unique-k-SAT relies solely
on unit clause propagation after bounded resolution.

The author believes that a better understanding of the algorithm presented by
Paturi, Pudlak, Saks, and Zane in [13] could yield better bounds on its running
time, beating the current best bound for general k-SAT.

For 3-SAT and 4-SAT, roughly speaking, the bound for this algorithm pro-
vided by Paturi et al is getting worse when the number of satisfying assignments
increases. The author conjectures that this can be avoided, i.e. that it is possible
to prove that the bounds hold for 3-SAT resp. 4-SAT in general.

6

Chapter 2

Algorithms for k-SAT

2.1 Introduction

Algorithms for k-SAT can more or less be divided into two classes: Davis-Putnam-
style and local search algorithms. In this chapter, we will discuss several interesting
algorithms of both classes and, finally, two algorithms which combine both classes.

2.2 Davis-Putnam Algorithms

Davis-Putnam-style algorithms try to iteratively guess the assignment for the for-
mula. At some point where the algorithm has to decide from a set of possible
choices, the algorithm branches and recursively calls itself for each branch. When
it encounters a contradiction, backtracking is performed.

Algorithm DP (CNF G)
1 if ⊥ ∈ G then return false
2 if G = ∅ then return true
3 Choose a variable v
4 if DP (G|v) or DP (G|v) then return true
5 return false

Figure 2.1: Trivial Davis-Putnam Algorithm

In Figure 2.1, a trivial Davis-Putnam Algorithm is shown. Essentially, this
algorithm tries all assignments and stops only if the formula is empty or there is a
contradiction. If the algorithm encounters an empty formula, the initial formula is

Chapter 2. Algorithms for k-SAT

satisfiable. However, if an empty clause is found, the algorithm does not have to
further examine assignments to that formula since the empty clause will remain in
the formula. In this case, the algorithm backtracks. This behavior is well known
as search-tree pruning because the algorithm can be seen as evaluating the search
tree, and whenever a contradiction is encountered, the search-tree rooted at the
current node is pruned.

However, we cannot guarantee that empty clauses occur, so the worst case
running time of that trivial algorithm is O (poly(|G|) · 2nG) for a CNF formula G.

2.2.1 Monien-Speckenmeyer Algorithm

A simple observation is that any k-clause in a CNF formula G has only 2k − 1

possible satisfying assignments. Hence we can develop an algorithm that chooses
the shortest clause and selects one of the possible assignments. Since we can pick
at most dnG/ke times a clause with at most k literals, it is rather straightforward
to prove that this algorithm solves k-SAT in running time at most

O
(
poly(|G|) ·

(
2k − 1

)dnG/ke
)

,

e.g. achieving O (1.913nG) for 3-SAT.
As a different approach, we can select the first literal in the shortest clauses and

branch on its assignment instead of reducing all variables in the shortest clause
in one step. Assume that we have the shortest clause abc. On the one hand, we
assign 1 to a, which makes the clause true and will remove it from the formula.
On the other hand, if we assign 0 to a, bc becomes the shortest clause in the
new formula. Therefore, define Tk(n) to be the number of steps to solve a k-CNF
formula on n variables. By recursively applying the preceding argument, we have
Tk(n) ≤ Tk(n − 1) + ... + Tk(n − k) + poly(n) for n > k. k-CNF formulas with
at most k variables can be solved in O (poly(n)) running time. We have that
Tk(n) ≤ αn · poly(n) where α is the largest zero of 1− x−1 − ...− x−k. For k = 3,
we obtain a running time of at most O (1.840n).

In [10], Monien and Speckenmeyer extended this approach using autark partial
assignments to eliminate variables. A partial assignment to a non-empty subset U

of the variables is called autark if every clause in G that contains a variable in U is

8

2.2. Davis-Putnam Algorithms

satisfied (and thus removed) when applying the partial assignment to the formula.
If there is some autark partial assignment, it can be found in O (poly(nG)). Monien
and Speckenmeyer observed that when assigning a variable in a CNF formula, an
autark partial assignment must exist in the new formula or a clause was shortened.
To obtain the Monien-Speckenmeyer algorithm, we try to select and apply an
autark partial assignment when the shortest clause has size k, cf. Figure 2.2

Algorithm MS(k-CNF G)
1 while the shortest clause in G has size k and there is some autark partial

assigment do
2 Select and apply some autark partial assignment to G
3 if ⊥ ∈ G then return false
4 if G = ∅ then return true
5 v := first literal in the shortest clause in G
6 if MS(G|v) or MS(G|v) then return true
7 return false

Figure 2.2: Monien-Speckenmeyer Algorithm

Always, except in the first step, when the shortest clause is a k-clause, there
must be an autark partial assignment. Hence, as long as the shortest clause has
size k, we can eliminate some variables. Afterwards, the formula contains a clause
with size less than k or is empty. Thus the recurrence for this algorithm is Tk(n) ≤
Tk(n− 1) + ... + Tk(n− k + 1) + poly(n) for n > k, so Tk(n) ≤ αn · poly(n) where
α is the largest zero of 1− x−1 − ...− x−k+1. We have:

Theorem 2.1. The algorithm of Monien and Speckenmeyer finds a satisfying
assignment for a satisfiable 3-CNF formula in running time at most O (1.618nG).

By adding more branching-rules for the decision of which variables to assign
what values, Schiermeyer claimed bounds of O (1.579nG) ([21]) and O (1.497nG)

([22]) for 3-SAT, and Kullmann claimed a bound of O (1.5045nG) ([9]).

2.2.2 The Algorithm of Paturi, Pudlak, and Zane

In 1997 in [12], Paturi, Pudlak, and Zane published the algorithm shown in Fig-
ure 2.3.

9

Chapter 2. Algorithms for k-SAT

Algorithm PPZ(k-CNF G)
1 β := assignment to G drawn uniformly at random
2 π := permutation of vars(G) uniformly at random
3 for each variable v ∈ vars(G) ordered by π do {
4 if G′ contains a unit clause v or v
5 then Set the value of v in β to satisfy that unit clause
6 Choose G := G′|v or G := G′|v depending on β(v) = 1 or β(v) = 0.
7 }
8 return β

Figure 2.3: Algorithm of Paturi, Pudlak, and Zane

For Unique-k-SAT, the analysis of this algorithm is quite simple. We call a
clause C ∈ G a critical clause for v if the only true literal in C with respect to β

is the one corresponding to v, i.e. flipping the value assigned to v in β would make
C instantly false. Let β∗ be the satisfying assignment for a uniquely satisfiable
k-CNF formula G.

Since for every variable v ∈ vars(G), β∗ ⊕ v does not satisfy C, there must
exist a clause C that is not satisfied by β∗ ⊕ v. Thus C is a critical clause for v

with respect to β∗. Assume that Algorithm PPZ chooses β∗ for β. The crucial
observation is that if the variables in C appear before v in π, C is reduced to a
unit clause that forces the assignment to v so that C is satisfied. The probability
for that to happen is at least 1/k.

By linearity of expectation, we expect to have at least nG/k variables forced
by unit clauses on the average. For these variables, Algorithm PPZ does not have
to guess the right assignment in β because their assignment is fixed up when the
algorithm reaches the unit clause. Hence Algorithm PPZ has to guess the right
assignment for at most nG − nG/k variables on the average.

For this reason, the probability that Algorithm PPZ succeeds is at least
2−nG+nG/k on the average. So we can conclude that the expected running time
of Algorithm PPZ is at most O

(
poly(nG) · 2nG−nG/k

)
. For Unique-3-SAT, this is

O (1.588nG).
For k-CNF formulas with more than one solution, we cannot guarantee the

existence of critical clauses for all variables. However, if there are many solutions,
possibly, there may be more good choices for β. Indeed, Paturi et al proved that

10

2.2. Davis-Putnam Algorithms

the expected running time of Algorithm PPZ is at most O
(
poly(nG) · 2nG−nG/k

)
in general for k-SAT.

They also derandomized the algorithm and achieved a deterministic running
time of O (1.861nG) for 3-SAT.

2.2.3 The Algorithm of Paturi, Pudlak, Saks, and Zane

In 1998 in [13], Paturi, Pudlak, Saks, and Zane proposed to add s-bounded res-
olution as a preprocessing step for some large s, hoping that the resolution step
produces some more critical clauses. Thus their new algorithm, shown in Fig-
ure 2.4, is a simple extension of Algorithm PPZ.

Algorithm PPSZ(k-CNF G, integer d, assignment β)
1 G := do kd-bounded resolution on G
2 π := permutation of vars(G) uniformly at random
3 for each variable v ∈ vars(G) ordered by π do {
4 if G′ contains a unit clause v or v
5 then Set the value of v in β to satisfy that unit clause
6 Choose G := G′|v or G := G′|v depending on β(v) = 1 or β(v) = 0.
7 }
8 return β

Figure 2.4: Algorithm of Paturi, Pudlak, Saks, and Zane

Paturi et al proved that this algorithm solves instances of 3-SAT and 4-SAT
in O (1.363nG) resp. O (1.477nG) expected running time for large d when an as-
signment β drawn uniformly at random is passed to the algorithm. For k ≥ 5, the
expected running time can be bounded by

O
(
2(1− µk

k−1)nG+εnG

)
with

µk =
∞∑

j=1

1

j
(
j + 1

k−1

)
and some arbitrary small positive ε.

Research on this algorithm is a main part of this work in Chapters 4 and 5.

11

Chapter 2. Algorithms for k-SAT

2.3 Local-Search Algorithms

In contrast to Davis-Putnam Algorithms, Local-Search Algorithms start with some
assignment and iteratively try to improve it by choosing a new assignment within
some small hamming distance.

2.3.1 Papadimitriou’s Algorithm

In 1991 in [11], Papadimitriou presented a nice algorithm that runs in polynomial
time and solves 2-SAT with probability at least 1/2, cf. Figure 2.5.

Algorithm PAPA(2-CNF G)
1 Let β be some arbitrary assignment to G
2 repeat 2n2

G times {
3 if β satisfies G then break
4 Select an arbitrary clause C ∈ G that is not satisfied by β
5 Choose a variable in C uniformly at random and flip its value in β
6 }
7 return β

Figure 2.5: Papadimitriou’s Algorithm

Theorem 2.2. For a satisfiable 2-CNF formula G, Algorithm PAPA(G) runs in
polynomial time and returns a satisfying assignment with probability at least 1/2.

Proof. At first, we analyze a random walk on the line. Assume that we have a
token walking on the integer line, but its position is limited to the integers 0,...,n
for some integer n. At every step, the token decides uniformly at random whether
to move one position smaller or greater, but if it is at position n, it moves always
to n − 1. For 0 ≤ i ≤ n, let s(i) denote the expected number of steps the tokens
walks until it hits position 0. We have:

s(0) = 0

s(n) = s(n− 1) + 1

s(i) =
s(i− 1) + s(i + 1)

2
+ 1 for 1 < i < n

This recursion can be solved to s(i) = i(2n− i) ≤ n2.

12

2.3. Local-Search Algorithms

Now, let β∗ be a satisfying assignment for G. We track the hamming distance
of β and β∗. In every repetition, we choose a wrong clause C. So at least one of
the two variables in C is assigned a wrong value by β. Since we choose a variable
from C uniformly at random, we decrease the hamming distance by one with
probability at least 1/2 in every repetition. The expected number of repetitions
needed to reach hamming distance 0 depends on the probability that we decrease
the hamming distance in every step. Clearly, the maximum is reached when every
repetition does this with probability exactly 1/2. Hence s(i) is an upper bound for
the number of repetitions necessary to reach hamming distance 0 when i denotes
the hamming distance of β∗ and the initial β. Because s(i) increases with i, s(nG)

is an upper bound for the number of repetitions considering an arbitrary initial β.
By Markov’s Inequality, with probability 1/2, we need at most twice the num-

ber of expected repetitions. Thus when we repeat the process 2n2 times, we find
β∗ with probability at least 1/2.

2.3.2 Schöning’s Algorithm

In 1999 in [23], Schöning established the beautiful randomized algorithm in Fig-
ure 2.6.

Algorithm SCH(k-CNF G, assignment β)
1 repeat 3nG times {
2 if β satisfies G then break
3 Select an arbitrary clause C ∈ G that is not satisfied by β
4 Choose a variable in C uniformly at random and flip its value in β
5 }
6 return β

Figure 2.6: Schöning’s Algorithm

Indeed, it is only a slight variation of Papadimitriou’s 2-SAT Algorithm. How-
ever, to bound the running time of this algorithm, Schöning proved the following
theorem, which bounds the success probability of this algorithm in terms of the
hamming distance dist(β, β∗) of some initial assignment β and some satisfying
assignment β∗:

13

Chapter 2. Algorithms for k-SAT

Theorem 2.3. Let G be a satisfiable k-CNF formula and β∗ be a satisfying as-
signment for G. For each initial assignment β, the probability that Algorithm
SCH(G, β) finds a satisfying assignment is at least

(k − 1)−dist(β,β∗)−o(nG).

Proof. Here we only sketch the proof. Similar to the proof of Theorem 2.2, a
random walk on the line is analyzed. This time, the token moves to the position
one smaller with probability 1/k and to the one greater with probability (k−1)/k.
If the token starts a position i, Schöning proved that the probability that the token
hits position 0 is at least (k − 1)−i−o(nG).

Now, let β∗ be a satisfying assignment for G. We track the hamming distance
of β and β∗. In every repetition, we choose a wrong clause C. So at least one of the
k variables in C is assigned a wrong value by β. Since we choose a variable from C

uniformly at random, we decrease the hamming distance by one with probability
at least 1/k in every repetition. Hence the probability to reach hamming distance 0

is at least the probability that a token starting at position dist(β, β∗) hits position
0. The claim follows.

Immediately from Theorem 2.3, we have the following corollary:

Corollary 2.4. Let G be a satisfiable k-CNF formula and β∗ be a satisfying as-
signment for G. Let P be a probability distribution that maps each assignment
β to some probability. The probability that Algorithm SCH(G, β), where β is an
assignment selected at random according to P , finds a satisfying assignment is at
least

E
[
(k − 1)−dist(β,β∗)−o(nG)

]
where the expectation is computed with respect to P (β).

Schöning used this to show that if we draw some assignment uniformly at
random and call Algorithm SCH with this assignment, we find a satisfying as-
signment with probability at least (2− 2/k + ε)−nG , which immediately yields the
O ((2− 2/k + ε)nG) expected running time bound for some arbitrary small positive
ε.

14

2.3. Local-Search Algorithms

Indeed, the approach can be transferred to more general constraint satisfaction
problems (CSP). Having a CSP with n variables, where each can take at most d

values and each constraint involves at most l variables, the random-walk approach
needs O (d · (1− 1/l) + ε)n) expected running time at most, cf. [23].

2.3.3 Deterministic Local Search

When derandomizing Schöning’s Algorithm, we have two major problems: how to
go and where to start. Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadim-
itriou, Raghavan, and Schöning presented in [6] in 2002 a way to address both
problems.

Let us first focus on the first problem. For some assignment β and some integer
r ≥ 0, define B(β, r) to be the hamming ball of radius r around β, i.e. the set of
all assignments β′ with dist(β, β′) ≤ r.

Lemma 2.5. Given a k-CNF formula G, an assignment β that does not satisfy
G, and let B(β, r) contain a satisfying assignment β∗ of G. Let C be a clause that
is not satisfied by G. Then there is a literal l in C so that B(β, r − 1) contains a
satisfying assignment for G|l=1.

Proof. β∗ must satisfy C, so for at least one of the literals l in C, G|l=1 must be
satisfiable. G|l=1 does not care anymore for the value assigned to l by β∗, thus
β∗ ⊕ l is a satisfying assignment for G|l=1. β∗ ⊕ l is contained in B(β, r − 1).

From this lemma, it is quite straightforward to devise the algorithm shown in
Figure 2.7, which searches a hamming ball of radius r around some assignment β.

Algorithm Search(k-CNF G, assignment β, integer r)
1 if β satisfies G then return true
2 if r = 0 or ⊥ ∈ G then return false
3 Select an arbitrary clause C ∈ G that is not satisfied by β
4 for each literal l in C do if Search(G|l=1, β, r − 1) then return true
5 return false

Figure 2.7: Search a Hamming Ball

The algorithm evaluates a search tree of maximum depth r and branching
factor k. Since this can be done in O (poly(n) · kr), we have:

15

Chapter 2. Algorithms for k-SAT

Lemma 2.6. Given a k-CNF formula G, an assignment β of G, and an integer r.
If B(β, r) contains a satisfying assignment for G, then Algorithm Search(G, β, r)

will find it in O (poly(nG) · kr) running time.

To address the second problem, we have to cover the search space with hamming
balls of size r. A (binary) code of length n is a set of bit strings with length n.
We use such a code of length nG to produce the requested covering. To generate
an assignment from a codeword, we simply let the ith bit in the codeword decide
whether 0 or 1 is assigned to the ith variable in an arbitrary but fixed ordering of
vars(G). In this way, a code generates a set of assignments. The distance of an
assignment β to the code is just the minimum that can be achieved by checking the
hamming distance of β to every assignment generated by the code. The covering
radius of a code is defined to be the maximum of the distances of all possible
assignments of G to the code. Having a code that has covering radius r, we have
to call Algorithm Search with every assignment generated by the code and r for
the search radius.

Dantsin et al proved that a code with covering radius 0 < r < nG/2 can be
enumerated in O

(
2(1−h(r/nG)+ε)nG

)
where h(p) is the binary entropy of p and ε

is some arbitrary small positive real. Hence enumerating the code and calling
Algorithm Search with each generated assignment takes time at most

O
(
2(1−h(r/nG)+ε)nG · poly(nG) · krnG

)
By choosing r = n/(k + 1), the running time is

O
((

2− 2

k + 1
+ ε

)nG
)

for some arbitrary small positive ε.
For 3-SAT, Dantsin et al provided a better variant of Algorithm Search, one

that exploits some more structural properties in order to lower the branching factor
so that the running time can be bounded by O (1.481nG). In 2004 in [3], Bruegge-
mann and Kern were able to improve the branching technique, again lowering the
branching factor. They achieved the currently best known deterministic bound of
O (1.473nG) for 3-SAT.

16

2.4. Davis-Putnam and Local Search

2.4 Davis-Putnam and Local Search

2.4.1 Schöning’s Algorithm and Reduction to 2-SAT

In 2002 in [25], Hofmeister, Schöning, Schuler, and Watanabe came up with the
algorithm for 3-SAT shown in Figure 2.8.

Algorithm HSSW (3-CNF G)
1 M := maximum independent set of 3-clauses in G
2 G′ := G
3 for each C ∈ M do
4 In G′, fix the variables in C to one of the seven satisfying assignments of

C and simplify
5 if the 2-CNF formula G′ is satisfiable then return true
6 Set up an assignment β for G in the following way: {
7 for each C = (a, b, c) ∈ M do
8 select at random {
9 w.p. 4/21: Initialize (a, b, c) with (0, 0, 1)
10 w.p. 4/21: Initialize (a, b, c) with (0, 1, 0)
11 w.p. 4/21: Initialize (a, b, c) with (1, 0, 0)
12 w.p. 2/21: Initialize (a, b, c) with (0, 1, 1)
13 w.p. 2/21: Initialize (a, b, c) with (1, 0, 1)
14 w.p. 2/21: Initialize (a, b, c) with (1, 1, 0)
15 w.p. 3/21: Initialize (a, b, c) with (1, 1, 1)
16 }
17 Each variable not initialized yet is assigned 0 or 1 uniformly at random
18 }
19 return SCH(G, β)

Figure 2.8: Algorithm of Hofmeister, Schöning, Schuler, and Watanabe

In the first stage, the algorithm tries to reduce the given 3-CNF formula to a 2-
CNF formula by fixing all variables in a maximum independent set M of 3-clauses.
Since all clauses that are not contained in M share a variable with some clause
in M , they lose at least one variable. Hence G′ is a 2-CNF formula, so we can
decide satisfiability of G′ in polynomial time. The probability that G′ is satisfiable
when G is satisfiable is at least (1/7)|M |, i.e. then we choose the right of the seven
possible assignments for all clauses in M . Observe that this part of the algorithm
already finds a satisfying assignment with high probability when |M | is small.

17

Chapter 2. Algorithms for k-SAT

In the second stage, an assignment β is set up by assigning variables in blocks.
As noted in Corollary 2.4, the success probability of Algorithm SCH is subject to
the probability space used to set up the assignment. Hofmeister et al proved that
the success probability of Algorithm SCH(G, β) is at least (3/4)nG−3|M | · (3/7)|M |

when β is selected using the random scheme in the algorithm. In contrast to the
first part, here we have a high success probability when |M | is large.

Combining both bounds, we have a worst case value for |M | at approximately
0.1466525·nG. So Algorithm HSSW needs O (1.3303nG) repetitions on the average
until a satisfying assignment for a satisfiable 3-CNF formula G is found.

Hofmeister et al approached the problem by reducing a 3-CNF to a 2-CNF
formula on the one hand, and on the other hand, information gathered during the
reduction process is used to improve the initial assignment passed to Schöning’s
Algorithm. This approach has been shown to provide a series of improvements
of the running time with bounds of O (1.32971nG) ([17]), O (1.329nG) ([2]), and
finally, O (1.32793nG) ([18]). The proof of the last bound is given in Chapter 3 in
this work.

2.4.2 The Algorithm of Iwama and Tamaki

In 2004 in [8], Iwama and Tamaki proposed to combine Schöning’s Algorithm with
the PPSZ Algorithm, cf. Figure 2.9.

Algorithm COMB(k-CNF G,integer d)
1 β := assignment to G drawn uniformly at random
2 β′ := PPSZ(G, d, β)
3 if β′ satisfies G then return β′

4 β′ := SCH(G, β)
5 if β′ satisfies G then return β′

6 return null

Figure 2.9: Algorithm of Iwama and Tamaki

Roughly speaking, the idea behind this approach is based on the observation
that the bound for the PPSZ Algorithm gets worse when the number of solutions
increases, whereas the bound for Schöning’s Algorithm improves in this case.

18

2.4. Davis-Putnam and Local Search

Iwama and Tamaki proved that repeating Algorithm COMB until a solution
for a satisfiable 3-CNF formula G is found has expected running time O (1.3238nG)

(for some large d). The result is improved in Chapter 5 to yield the currently best
randomized running time bound of O (1.32216nG) for 3-SAT.

19

Chapter 3

Improving Randomized Local
Search by Initializing Strings of
3-Clauses

3.1 Introduction

In 1999 in [23], Schöning established a beautiful randomized algorithm, which we
already discussed in Section 2.3.2. Using this algorithm, Schöning proved that a
satisfying assignment for a satisfiable 3-CNF G can be found in O ((4/3 + ε)nG)

expected running time.
In Section 3.2, we show how to combine a randomized solver with Schöning’s

algorithm in a general way by exploiting information extracted during the solv-
ing process. This is based on the initial idea given in [25], which describes an
O (1.3302nG) time randomized algorithm for 3-SAT. We already discussed their al-
gorithm in Section 2.4.1. In Section 3.4, we apply this idea to Algorithm Strings

and establish an O (1.32793nG) expected running time bound. Although it was
independently invented, the approach we use in Section 3.2 is similar to the one
found in [2].

Given a probability distribution P for assignments to G, recall that Corol-
lary 2.4 states that the success probability of Algorithm SCH is at least

E
[
2−dist(β,β∗)−o(nG)

]
where the expectation is calculated with respect to P (β).

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

In Section 3.2, we will see how we can achieve better bounds using an optimized
probability distribution, which biases for assignments that could be closer to the
satisfying assignment.

3.2 Combining Algorithm SCH with a Random-
ized Solver

A local pattern P is a tuple (GP , nP , µP , PP , λP) where GP is a CNF formula on
nP > 0 variables, 0 < µP < 1 and (3/4)nP < λP < 1 are arbitrary reals, and PP is
a probability distribution that maps each assignment for GP to some probability
so that

λP ≤ E
[
2−dist(β,β∗)

]
holds for all satisfying assignments β∗ of GP , where the expectation is computed
with respect to PP(β). We define

oP =
ln µP

ln µP − ln λP + nP ln(3/4)

for a local pattern P . How to compute such a probability distribution is a some-
what technical issue, which we will deal with in Section 3.5. Moreover, the meaning
of µP will become clear throughout the rest of this section. For now, let it be some
arbitrary real in (0, 1).

Let G and H be two arbitrary CNF formulas. We call G and H isomorphic
if there exists an one-to-one mapping φ from vars(G) to vars(H) and a set of
variables X so that transforming G into H can be done by renaming variables
using φ and then flipping all signs of all variables in X. For example, we can
transform abc into fgh with φ = {(a, f), (b, g), (c, h)} and X = {h}. Consequently,
we transform an assignment for G into the corresponding assignment β′ of H: For
v ∈ vars(G), set β′(φ(v)) = β(v) if v 6∈ X and β′(φ(v)) = 1 − β(v) if v ∈ X.
Of course, there may be many isomorphisms from G to H, but let mapG,H be
a function that maps each assignment for G to an assignment for H using some
arbitrary but fixed isomorphism.

22

3.2. Combining Algorithm SCH with a Randomized Solver

Let Ψ be a non-empty, finite set of local patterns, then Ψ is called a local
scheme. We define

oΨ = (3/4)maxP∈Ψ oP ,

which is, as we will see later, the success probability of forthcoming Algorithm
Combine.

Let I be a mapping which maps each local pattern P ∈ Ψ to a set of formulas
I(P), where each formula in I(P) is isomorphic to GP . Furthermore, do not let
each two different formulas from

⋃
P∈Ψ I(P) share variables, i.e. they are mutually

independent. Then I is a called an instance of Ψ. With nI , we denote the total
number of variables involved in the instance I. We define:

µ(I) =
∏
P∈Ψ

µ
|I(P)|
P and

λ(I) =
∏
P∈Ψ

λ
|I(P)|
P · (3/4)nG−nI

We will prove the following invariant:

Lemma 3.1. For every instance I of Ψ, it is true that

max{µ(I), λ(I)} ≥ onG
Ψ .

Proof. max{λ(I), µ(I)} depends on an actual instance I. Therefore, to obtain
what claimed, we have to establish a lower bound on max{λ, µ} which does not
care for I, i.e. we have to minimize max{λ(I), µ(I)} with respect to all possible
instances I of Ψ.

For convenience, we write i(P) to stand for |I(P)|. We take the logarithm of
both µ(I) and λ(I) to obtain

lµ = ln µ =
∑
P∈Ψ

(ln µP · i(P)) and

lλ = ln λ =
∑
P∈Ψ

((ln λP − nP ln(3/4)) · i(P)) + ln(3/4) · nG.

Since λP > (3/4)nP , 0 < λP < 1, and 0 < µP < 1 hold for all P ∈ Ψ,
we observe that all coefficients of i(P) in lµ and lλ are negative resp. positive.

23

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

lµ = lλ can be considered as a plane equation. So, fix some arbitrary point on
that plane and vary i(P) away from the plane in some direction. Because of the
signs of the coefficients in lµ and lλ, depending on the direction, lµ resp. lλ will not
decrease. Thus the minimum of lµ constrained to lµ = lλ is the global minimum
of ln max{λ(I), µ(I)} with respect to all possible instances I. Hence we need to
consider the following linear program:

Minimize lµ

with respect to i(P) ≥ 0 for all P ∈ Ψ

constrained to lµ = lλ. (3.1)

We know from the theory of linear programming (cf. [26]) that the minimum
will be attained on some intersection of the border planes of the solution space.
So, let R ∈ Ψ be a local pattern that maximizes oR, and set i(P) to 0 for all
P ∈ Ψ−R. Moreover, we solve constraint (3.1) and set

i(R) =
ln(3/4)

ln µR − ln λR + nR ln(3/4)
nG = oR

ln(3/4) · nG

ln µR
.

Observe that this is a feasible basic solution to the linear program, i.e. one that
satisfies all constraints. We will rewrite the objective function lµ using the null
(non-basic) variables (by replacing i(R)) and verify that all coefficients of non-
basic variables are at least 0. Furthermore, we know that lµ is a minimal solution
if all non-basic variables in this rewritten form have coefficients at least 0. So,
with dP , we denote the coefficient of i(P) in the rewritten form, and let cµ

P and cλ
P

denote the coefficient of i(P) in the original form of lµ resp. lλ. Then we obtain
for all P ∈ Ψ−R that

dP = cµ
P − cµ

R
cλ
P − cµ

P
cλ
R − cµ

R
.

To show that dP ≥ 0 holds, we have to prove that

cµ
P ≥ cµ

R
cλ
P − cµ

P
cλ
R − cµ

R
.

So, we insert the actual values to obtain equivalently

ln µP ≥ ln µR
ln λP − ln µP − nP ln(3/4)

ln λR − ln µR − nR ln(3/4)
.

24

3.2. Combining Algorithm SCH with a Randomized Solver

Observe that the numerator of the fraction is greater than 0 because of the
definition of local patterns and the precondition for λP . Thus we can divide by
the numerator and by −1 to equivalently obtain

ln µP
ln µP − ln λP + nP ln(3/4)

≤ ln µR
ln µR − ln λR + nR ln(3/4)

, i.e.

oP ≤ oR,

which is true due to the maximality of oR, so dP ≥ 0 holds.
We apply the minimal solution to the equation for lµ and obtain

ln max{λ(I), µ(I)} ≥ ln µR · i(R)

= ln µR · oR
ln(3/4) · nG

ln µR
= oR · ln(3/4) · nG

max{λ(I), µ(I)} ≥ (3/4)oR·nG

= onG
Ψ .

This finishes the proof.

Algorithm IRWSolve(CNF G, local scheme Ψ, instance I)
1 β := uninitialized assignment for G
2 for each P in Ψ and each H ∈ I(P) do
3 In β, randomly assign the variables of H where each partial assignment

β′ of H has probability PP(mapH,GP (β′))
4 for each variable v of G that is not initialized yet do
5 Uniformly at random, assign 0 or 1 to v in β
6 return SCH(G, β)

Figure 3.1: Running Schöning’s Algorithm with Better Initial Assignments

The algorithm shown in Figure 3.1 uses an instance of a local scheme to run
Algorithm SCH with better initial assignments. The relevant properties are stated
in the following lemma:

Lemma 3.2. Let G be a satisfiable 3-CNF formula, Ψ a local schema, and I

an instance of Ψ so that each formula in I(P) is a sub formula of G. Then with
probability at least λ(I)·2−o(nG), Algorithm IRWSolve(G, Ψ, I) returns a satisfying
assignment for G.

25

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

Proof. Fix some satisfying assignment β∗. From Corollary 2.4, we know that the
success probability is at least E

[
2−dist(β,β∗)−o(nG)

]
computed with respect to to the

assignment probability distribution that has been used to set up the assignment.
Algorithm IRWSolve initializes the assignment in blocks which are mutually in-
dependent from each other. Let l denote the number of independent blocks, and
let Vi with i ∈ [l] denote the set of variables that are set up in block i. Then

E
[
2−dist(β,β∗)

]
=

∏
i∈[l]

E
[
2−dist(βi,β

∗
i)

]
is true where βi and β∗i denotes the restriction of β resp. β∗ to Vi. For some block
i, the expectation depends only on the assignment to the variables in Vi. Hence
we only need to compute the expectation with respect to the probability space Pi

that is used for the assignment to Vi, i.e.

E
[
2−dist(β,β∗)

]
=

∏
i∈[l]

Ei

[
2−dist(βi,β

∗
i)

]
where Ei denotes the expectation with respect to a random assignment βi to Vi

having probability Pi(βi).
For a block i that is set up in step 5, we simply have Ei

[
2−dist(βi,β

∗
i)

]
= 1

2
20 +

1
2
2−1 = 3/4 since the one and only variable in Vi is set to 0 or 1 with probability

1/2 each, so we may guess the right assignment with probability 1/2.
Hence, we consider a block i in step 3, i.e. a CNF formula H with local pattern

P . Pi is just obtained by applying mapH,GP to PP . So we have

Ei

[
2−dist(βi,β

∗
i)

]
= EP

[
2−dist(mapGP ,H(β′),β∗i)

]
= EP

[
2−dist(β′,mapH,GP (β∗i))

]
≥ λP

where EP denotes the expectation with respect to a random assignment β′ of
GP having probability PP(β′). The first equality follows since mapGP ,H does not
change hamming distances. The inequality follows since mapH,GP (β∗i) is a satisfy-
ing assignment for GP , and thus, we can apply the definition of λP .

The claim follows because for each P , we have |I(P)| times factor λP , and
finally, we have nG − nI times factor 3/4.

26

3.2. Combining Algorithm SCH with a Randomized Solver

A randomized Ψ-solver Solver(G) that returns a pair (β, I) is a polynomial
time algorithm that makes a number of random decisions using fixed positive
probabilities to solve a 3-CNF formula and that returns an instance I of Ψ and an
assignment β. This algorithm can be viewed as descending a top-down decision
tree until it hits a leaf. Every leaf is labeled by an assignment β and an instance
I. If β is null, the explored leaf does not yield a satisfying assignment for G,
otherwise β is a satisfying assignment for G. However, every leaf has a certain
probability of being explored, and we require that a leaf labeled with an instance
I, has probability at least µ(I) of being explored. Furthermore, if G is satisfiable,
then at least one possible leaf reachable by Solver must be labeled by a satisfying
assignment for G.

Algorithm Combine(CNF G, local scheme Ψ, Ψ-solver Solve)
1 I := ∅
2 repeat {
3 (β, I ′) := Solve(G)
4 if β 6= null then return β
5 if λ(I ′) > λ(I) then I := I ′

6 β := IRWSolve(G, Ψ, I)
7 if β satisfies G then return β
8 }

Figure 3.2: Combine Ψ-Solver and Schöning’s Algorithm

The algorithmic idea is that if the decision tree is not deep, then a satisfying
leaf can be found quickly, yet if the decision tree is deep, then a long path can be
found quickly which yields a good instance for Algorithm IRWSolve. The poly-
nomial time algorithm shown in Figure 3.2 is a template that combines Algorithm
IRWSolve and a randomized Ψ-solver.

Now, we settle an important result for this algorithm:

Proposition 3.3. Let Ψ be a local scheme and Solve a randomized Ψ-solver. Then
Algorithm Combine(G, Ψ, Solve) finds a satisfying assignment for a satisfiable 3-
CNF formula G in expected running time at most

o−nG
Ψ · 2o(nG).

27

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

Proof. Because G is satisfiable, there is at least one satisfiable leaf. Every node in
the tree explored by the solver Solve is visited with a certain probability, which is
the sum of the probabilities of the leaves contained in the subtree rooted at that
node. Here, we assign to every node the probability that it is being visited by a
run of Algorithm Combine.

At first, we consider the case that there is some leaf x that has probability less
than onG

Ψ . Beginning at this leaf, we climb up the tree until we hit the first node y

that has probability at least onG
Ψ , which must exist since the root has probability

1 of being visited. Let z be the child of y that lies on the path from y to x. Let
p be the lowest probability that is used in any random decision of the algorithm,
note that p is a fixed positive constant. Then z has probability less than onG

Ψ ,
but at least onG

Ψ · p. Thus we expect at most o−nG
Ψ /p iterations until the algorithm

explores z and then descends to a leaf below z. Because z has probability less than
o−nG
Ψ , every leaf in the subtree rooted at z has probability less than o−nG

Ψ . Hence
every instance I ′ that is returned by the solver when reaching some leaf under z

has µ(I ′) < onG
Ψ since µ(I ′) is a lower bound for the probability that a leaf with

instance I ′ is reached.
By Lemma 3.1, we know that λ(I ′) ≥ onG

Ψ holds. Since the algorithm replaces
I only by I ′ if λ(I ′) > λ(I) is true, λ(I) ≥ onG

Ψ holds all the time after such an
instance I ′ was found.

As soon as λ(I) ≥ onG
Ψ holds, we expect another at most o−nG

Ψ · 2o(nG) iterations
until a satisfying assignment is found by Algorithm IRWSolve, cf. Lemma 3.2.
Hence we expect at most

o−nG
Ψ /p + o−nG

Ψ · 2o(nG) = o−nG
Ψ · 2o(nG)

iterations until we find a satisfying assignment for G.
We still have to consider the case that there is not any leaf that has probability

less than onG
Ψ . In this case, every leaf has probability at least onG

Ψ of being visited,
and thus also a leaf containing a satisfying assignment is expected to be found
within o−nG

Ψ iterations. The claim follows.

In Section 3.4, we will devise a randomized solver called Strings, which is to
be used with Algorithm Combine. But before, in Section 3.3, we have to prove
some interesting properties of unit clause propagation.

28

3.3. Unit Clause Propagation

3.3 Unit Clause Propagation

In this section, we focus on the elimination of unit clauses. The crucial observation
is that a unit clause can only be satisfied by assigning 1 to its lonely literal. Despite
that this idea is quite simple, the elimination of unit clauses is quite powerful.
We already discussed two algorithms, Algorithm PPZ and PPSZ, which use
elimination of unit clauses as lonely rule to infer partial assignments.

Let a CNF formula that does not contain a unit clause be called unit-free. For
two CNF formulas G and H, we define χ(G, H) to be the set of pairs (C, D) ∈
G × H with D ⊂ C and |D| = 2, i.e. a clause C which is a 3-clause in G and
that has been reduced to a 2-clause D in H. The following proposition shapes the
kernel of the algorithms in this chapter:

Proposition 3.4. Let G be a 3-CNF formula and L a set of literals so that G|L
is unit-free. Then at least one of the following holds:

(1) If G is satisfiable, then G|L is satisfiable.

(2) G|L contains ⊥ and thus is not satisfiable.

(3) χ(G, G|L) is not empty.

Proof. If G is not satisfiable, then obviously (1) holds. Therefore, let G be satis-
fiable. Assume that neither (2) nor (3) hold. We will show that (1) holds in this
case.

Let β∗ be a satisfying assignment for G. Then there must be a clause D ∈ G|L
that is not satisfied by β∗ since G|L is not satisfiable by our assumption. But,
observe that if D ∈ G held D would be satisfied by β∗, thus D cannot be in G.
However, D ∈ G|L holds, and thus there is a clause C ∈ G with D ⊂ C, i.e. D is
obtained by removing at least one literal l with l ∈ L from some clause C ∈ G.

Firstly, D cannot be ⊥ since (2) is assumed to be wrong, but secondly, D

cannot be a unit clause since G|L is unit-free, and finally, D cannot be a 3-clause
since then C would have to be a 4-clause, but G is a 3-CNF formula. We conclude
that D has to be a 2-clause, yet this violates our assumption that (3) is wrong
since (C, D) would be in χ(G, G|L).

29

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

Hence such a clause D ∈ G|L cannot exist, and finally, we conclude that G|L
is also satisfied by β∗, which completes the proof.

Algorithm Simplify(CNF G)
1 while there exists a unit clause l ∈ G do
2 G := G|l
3 return G

Figure 3.3: Unit-Clause Propagation

We can apply this proposition to any case where a unit-free CNF formula G

is obtained from a 3-CNF formula G by fixing arbitrary literals in any order.
Proposition 3.4 requires a unit-free CNF formula G|L, and now, we discuss how to
handle unit clauses. Since a unit clause forces its literal to be true, it is quite easy
to remove all unit clauses from some CNF formula G. This can be done using the
trivial polynomial time algorithm shown in Figure 3.3.

As stated before, a unit clause allows only one value for its literal, so we see
that the result of Simplify(G) is satisfiable if and only if G is satisfiable. Since
the formula returned as result of this algorithm is unit-free, we can conclude:

Lemma 3.5. Let G be a unit-free CNF formula, L a set of literals, and H =

Simplify(G|L). Let L′ denote the set of all literals fixed in the loop in Algorithm
Simplify. Then the 3-CNF formula G and the set of literals L ∪ L′ satisfy the
precondition of Proposition 3.4.

In Section 3.4, we will use the preceding lemma in combination with Proposi-
tion 3.4 in order to optimize the reduction process.

Let us deal with the following simple yet powerful lemma:

Lemma 3.6. Let G be a 3-CNF formula and ab a 2-clause in G. Set H to
Simplify(G|a). Let (C, D) be an arbitrary pair in χ(G, H). If b ∈ D holds, then
G is equivalent to G′ = G− C + D.

Proof. Assuming that b is contained in D, let d be the literal of C that is missing
in D. Observe that d can even be a. We show that any assignment for G satisfies
G′ and vice versa.

30

3.3. Unit Clause Propagation

So, let β∗ be a satisfying assignment for G. We need to show that β∗ satisfies D.
Observe that assigning 1 to a in G results in fixing d to 0 by Algorithm Simplify.
Hence if β∗ assigns 1 to a, it must also assign 0 to d. Because d ∈ C, some literal
l ∈ C with l 6= d must be true under β∗. Moreover, l must be contained in D since
d is the literal removed from C to obtain D. Thus D is true under β∗. On the
other hand, if β∗ assigns 0 to a, then β∗ must assign 1 to b in order to satisfy ab.
Then D is satisfied by β∗ since b ∈ D holds. We conclude that β∗ satisfies G′.

Now, let β∗ be a satisfying assignment for G′. Then β∗ satisfies D and thus
also satisfies C since D ⊂ C. Hence G is also satisfied by β∗.

A 3-CNF formula G is clean if Lemma 3.6 is not applicable to any 2-clause in
G. To clean a 3-CNF formula means to apply Lemma 3.6 as long as possible. For
example, {ab, abc} or {ab, bc, acd} cannot occur in a clean 3-CNF formula.

The following lemma shows that cleaning preserves the properties of Proposi-
tion 3.4:

Lemma 3.7. Let G be a clean 3-CNF formula and L a set of literals. Set H =

Simplify(G|L), and let H ′ be the cleaned version of H. Then the following holds:

(1) H contains ⊥ if and only if H ′ contains ⊥.

(2) If χ(G, H) is empty, then χ(G, H ′) is empty.

(3) If χ(G, H) is not empty, then χ(G, H ′) is not empty.

Proof. Case (1) is obvious since cleaning does neither add nor remove ⊥.
Consider case (2). Assuming that χ(G, H) is empty, there is not any 2-clause in

H that has not been already a 2-clause in G. Thus, Lemma 3.6 is not applicable to
H because G is already clean and new 3-clauses cannot emerge, showing H = H ′.

Finally, we prove case (3). Cleaning does not decrease the number of 2-clauses
in a 3-CNF formula. So all 2-clauses in H are also 2-clauses in H ′. That means
χ(G, H) ⊆ χ(G, H ′).

We will exploit these facts in our randomized solver presented in Section 3.4.
Figure 3.4 shows an extension of Simplify that also cleans the formula.

31

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

Algorithm CleanSimplifyClean(CNF G)
1 Clean G
2 G := Simplify(G)
3 Clean G
4 return G

Figure 3.4: Clean, Simplify, and Clean

3.4 Randomized Solver Using Strings

Let (C1, .., Cl) be a sequence of 3-clauses so that successive clauses share no more
than two, but at least one variable, and that non-successive clauses are indepen-
dent. Then we call (C1, .., Cl) a string of length l. For a string S and a clause C,
let S � C denote the string obtained by appending C to S.

The type of a string S, denoted with type(S), is built as follows. type(S) is
a sequence having one item less than S. Each item in type(S) describes how the
corresponding succeeding clauses in S are ‘connected’. p means both clauses share
exactly one variable and that with the same sign, whereas n means both clauses
share exactly one variable and that with different signs. Finally, nn tells that both
clauses share exactly two variables and both with different signs. These types are
sufficient for our intentions. For example, the string (abc, bcd, def, fgh) has type
(nn, n, p). The types of strings are interesting because all strings of the same type
are isomorphic to each other. Hence one representative string of some type can be
used as GP in a local pattern P .

We will establish a randomized solver which outputs a couple of strings as
byproduct. These will serve as an instance passed to Algorithm IRWSolve. The
solver extracts strings in the formula one-by-one by ‘growing’ them. Growing
means that a string is started with a single clause and extended step-by-step with
appropriate clauses.

The randomized solver is split into a set of algorithms, which we will discuss
in this section. Despite the fact that the algorithms call each other, they do not
branch, i.e. they will finish in polynomial time. However, the algorithms make a
lot of random decisions, where some may fail to produce a satisfying assignment.
But, the algorithms guarantee completeness, i.e. if the formula is satisfiable before
some decision is done, there is at least one choice at that step that preserves

32

3.4. Randomized Solver Using Strings

satisfiability. Thus if the input formula is satisfiable, there is a positive probability
to find a satisfying assignment, i.e. there exists a satisfying leaf.

Since a string may become very long, the algorithms request a set of string
types T which has the following meaning. T is a set of forced stop types, i.e. if a
string has type in T , it will not be extended any longer. Beside these, there are
cases where the algorithms automatically decide to stop the string, these are called
the automatic stop types. At the end, we will see that we only need to consider
strings of length at most five, i.e. that looking for longer strings does not improve
the running time.

All algorithms make us of some global variables: G is the current formula, I

contains the current instance of strings, S is the string currently being grown, and
T contains a set of stop string types.

Algorithm Finish()
1 I(type(S)) := I(type(S)) + S
2 S := ()

Figure 3.5: Finish the Current String

The algorithm shown in Figure 3.5 finishes the current string, i.e. it adds string
S to the corresponding set of the instance I and resets S.

Algorithm Extend(3-clause C, set of clauses D)
1 if S 6= () and C is independent to S then Finish
2 S := S � C
3 if type(S) ∈ T then {
4 Finish
5 Uniformly at random, select β from the set of satisfying assignments for

D
6 In D, toggle the sign of all literals which are wrong under β, i.e. build a

set of literals reflecting β
7 G := G|D
8 return false
9 }
10 return true

Figure 3.6: Extend the Current String

33

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

The algorithm shown in Figure 3.6 tries to extend the current string S by
clause C. If C and S are independent, S is finished, i.e. type(S) is an automatic
stop type. However, C is added to S, and the algorithm checks if the type of the
result string is in T , i.e. type(S) is a forced stop type. In this case, S is finished
and a random assignment β for D is chosen uniformly from the set of assignments
satisfying D, i.e. each satisfying assignment for D has probability 1/|sat(D)|. In
G, the variables of D are fixed according to β. Finally, Algorithm Extend returns
whether the type S was not finished because its type is not in T , i.e. if true is
returned, the string is extensible.

Algorithm Strings(CNF G)
1 For all P ∈ Ψ, set I(P) := ∅
2 S := ()
3 while exists literal c in G do
4 Choose2(c, c)
5 if ⊥ ∈ G then β := null
6 else β := final assignment (how all the literals were fixed)
7 return (β, I)

Figure 3.7: Randomized Solver Using Strings

The algorithm shown in Figure 3.7 is the algorithm we are going to use in
Algorithm Combine. It does some initialization and essentially loops as long as
it finds a literal that is not fixed and calls Algorithm Choose2 to deal with the
literal. Finally, it returns an assignment and an instance containing all the strings
found.

The algorithm shown in Figure 3.8 gets two sets of literals C1 and C2 and
decides whether it should use G|C1 or G|C2 to continue with. Note that the choice
of C1 and C2 must ensure that at least one of G|C1 or G|C2 is satisfiable if G is
satisfiable.

At first, the algorithm checks whether one of the two sets can be excluded using
Lemma 3.7 and Lemma 3.5. This is done by checking for ⊥ and empty χ, which
would reveal that one of the two choices preserves satisfiability. If a check is true,
then the string is finished and the function returns.

If all checks fail, then we choose whether to take G|C1 or G|C2 at random and
get a reduced 3-clause to extend the current string. This way, the new clause

34

3.4. Randomized Solver Using Strings

Algorithm Choose2(clause C1, C2)
1 G1 := CleanSimplifyClean(G|C1)
2 G2 := CleanSimplifyClean(G|C2)
3 if ⊥ ∈ G1 then G := G2, Finish, return
4 if ⊥ ∈ G2 then G := G1, Finish, return
5 if χ(G, G1) = ∅ then G := G1, Finish, return
6 if χ(G, G2) = ∅ then G := G2, Finish, return
7 select at random {
8 w.p. 1/2: {
9 (C, D) := arbitrary pair in χ(G, G1)
10 G := G1

11 if Extend(C, {D}) then Choose3(C, D)
12 }
13 w.p. 1/2: same as previous case, but use G2 instead of G1

14 }

Figure 3.8: Choose from Two Sets of Assignments

will extend S using an n- or p-connection or starts a new string. If the string
is extensible, control is passed to Algorithm Choose3 in order to look for more
extensions.

The algorithm shown in Figure 3.9 takes a 2-clause ab that has to be in G and
decides whether to continue with G|ab, G|ab, or G|ab.

At first, we check whether we can derive a contradiction for a = 1 or b = 1. If
a or b can be deduced to be 0, we can safely fix the other variable to 1 since ab

must be satisfied. In this case, we finish the string and return.

Secondly, we look for a contradiction in every of the three possible assignments
that satisfy ab. If we find some, we can exclude the contradictious assignment and
pass control to Algorithm Choose2 to select from the two remaining choices.

Thirdly, we check for empty χ since in absence of a contradiction, an empty χ

tells us that satisfiability of G implies that the respective new formula is satisfiable
too, cf. Lemma 3.7 and Proposition 3.4. If we can eliminate both variables, we
finish the string and return. If we can deduce only the value of one variable, we
pass control to Algorithm Choose2 to select from the remaining two choices.

35

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

Algorithm Choose3(3-clause C, 2-clause ab)
1 Ga := CleanSimplifyClean(G|a)
2 Gb := CleanSimplifyClean(G|b)
3 Gab := CleanSimplifyClean(G|ab)
4 Gab := CleanSimplifyClean(G|ab)
5 Gab := CleanSimplifyClean(G|ab)
6 if ⊥ ∈ Ga then G := Gab, Finish, return
7 if ⊥ ∈ Gb then G := Gab, Finish, return
8 if ⊥ ∈ Gab then Choose2(ab, ab), return
9 if ⊥ ∈ Gba then Choose2(ab, ab), return
10 if ⊥ ∈ Gab then Choose2(ab, ab), return
11 if χ(G, Gab) = ∅ then G := Gab, Finish, return
12 if χ(G, Gab) = ∅ then G := Gab, Finish, return
13 if χ(G, Gab) = ∅ then G := Gab, Finish, return
14 if χ(G, Ga) = ∅ then Choose2(ab, ab), return
15 if χ(G, Gb) = ∅ then Choose2(ab, ab), return
16 if ∃c : abc ∈ G then {
17 if not Extend(abc, {abc, ab}) then return
18 Choose5(abc, ab)
19 return
20 }
21 select at random {
22 w.p. 1/3: {
23 (C, D) := arbitrary pair in χ(G, Ga)
24 G := Gab

25 if Extend(C, {D}) then Choose3(C, D)
26 }
27 w.p. 1/3: same as previous cause, but swap a and b
28 w.p. 1/3: {
29 (C, D) := arbitrary pair in χ(G, Gab)
30 G := Gab

31 if Extend(C, {D}) then Choose3(C, D)
32 }
33 }

Figure 3.9: Choose from Three Sets of Assignments

36

3.4. Randomized Solver Using Strings

Fourthly, we check if there is some clause abc for some c in G. Then we extend
the string by abc, and if still extensible, we pass control to Algorithm Choose5 to
solve this special case. This way, an nn-connection is generated.

Hence, we can assume that there is not such a clause. However, because of the
checks, we know that we can find reduced clauses for all three possible assignments
to ab and thus extend the string by C or start a new string for some pair (C, D)

in χ. If the string is still extensible, we pass control to Algorithm Choose3 for
further extensions. We show that C neither contains a, b, nor ab.

If ab was in C then we would have passed control to Algorithm Choose5.
Assume that b is in C. We do not need to consider G|b or G|ab since then b would
be fixed to 1 and C would be removed, but not shortened to D. Hence we have to
deal only with G|a.

At first, assume that b ∈ D. Then Lemma 3.6 would be applicable, meaning
that Ga would not be clean. However, this cannot be true since Ga was cleaned
by Algorithm CleanSimplifyClean. So b must be the literal that was removed
from C to obtain D. This means that setting a to 1 induces b to be 0, yielding ⊥
in G|ab. Since the algorithm passed that check, we know that this cannot happen,
thus b cannot be the removed literal. Hence b cannot be in C.

The proof for a 6∈ C follows by swapping a and b. So, we proved that C cannot
share a variable with the last clause in the string with same sign (p-connection),
and moreover, C cannot share two variables with different signs (nn-connection).
Hence clause C will extend S using an n-connection or starts a new string.

The algorithm shown in Figure 3.10 needs a 2-clause ab ∈ G and a 3-clause
abc ∈ G. We have five possible assignments to that clause pair and the algorithm
decides which assignment to use. It uses some probability constants p0, p1, q0, and
q1 with 2p0 + p1 = 1 and q0 + q1 = 1, which are subject to optimization and given
in Section 3.5.

In the outer select statement, we select one of the three satisfying assignments
for ab, so this decision propagates satisfiability in at least one of the choices.

The first case corresponds to settings a = 1 and b = 1, which imply c = 1. We
finish the string and return, i.e. type(S) is an automatic stop type. This choice
has probability p1.

37

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

Algorithm Choose5(3-clause abc, 2-clause ab)
1 select at random {
2 w.p. p1 : G := G|abc, Finish
3 w.p. p0 : {
4 G := G|ab

5 Gc := CleanSimplifyClean(G|c)
6 Gc := CleanSimplifyClean(G|c)
7 if ⊥ ∈ Gc then G := Gc, Finish, return
8 if χ(G, Gc) = ∅ then G := Gc, Finish, return
9 select at random {
10 w.p. q0 : G := Gc, Finish, return
11 w.p. q1 : {
12 (C, D) = arbitrary pair in χ(G, Gc)
13 G := Gc

14 if Extend(C, {D}) then Choose3(C, D)
15 }
16 }
17 }
18 w.p. p0 : same as previous case, but swap a and b
19 }

Figure 3.10: Choose from Five Sets of Assignments

The second (and analogously third) case means setting a = 1 and b = 0.
We still have to consider the value for c. At first, we check if we could apply
Proposition 3.4 for c = 1. If we find ⊥ in Gc, we are safe to go with c = 0, whereas
an empty χ(G, Gc) would suggest c = 1. In both case, we finish the string and
return. Here, we have probability p0.

Otherwise we choose whether to continue with c = 0 or c = 1. On the one
hand, if we decide to follow c = 0, we finish the string and return. On the other
hand, we select a reduced clause pair (C, D) from χ(G, Gc), extend the string by
C or start a new string, and we go on with Algorithm Choose3 if the string is
extensible. The first choice has total probability p0q0, while the second has p0q1.

To obtain our final algorithm, we use Algorithm Strings in the call to Algo-
rithm Combine(G, Ψ, Strings). In Section 3.5, we explain how Ψ and T are set
up. These are rather technical issues and omitted here. Yet, they show that the
worst case is determined by the strings of type () (i.e. single clauses), and in that

38

3.5. Local Scheme for Algorithm Strings

case, λ() = 3/7 and µ() = 1/3 hold. By inserting these values in the equation in
Proposition 3.3, we obtain the following proposition, which is the main result of
this chapter:

Proposition 3.8. Let G be a satisfiable 3-CNF formula. Then Algorithm
Combine(G, Ψ, Strings) finds a satisfying assignment for G in expected running
time at most O (1.32793nG).

Interestingly, the bound does not decrease if we try to seek for longer strings
because the case () may always arise and thus will always be the limit, at least
using our approach.

3.5 Local Scheme for Algorithm Strings

In this section, we deal with the local schema Ψ that has to be used in our
O (1.32793nG) algorithm presented in the preceding section. For each string type
T , we form a local pattern PT to be included in Ψ. For a string type T , we set
GPT

to {C1, ..., Cl} where the string SPT
= (C1, ..., Cl) is some arbitrary string that

has type T . Note that we can use any such string (C1, ..., Cl) because all formulas
{C1, ..., Cl} where (C1, ..., Cl) has type T are isomorphic to each other.

We split the types into two cases: the forced stop types in T and the automatic
stop types not in T . The types in T bound the strings that can be found by the
algorithms in Section 3.4. The forced stop types occur if a string is finished in
Algorithm Extend because its type is found in T . The automatic stop types may
occur if a string is finished because Algorithm Extend recognizes an independent
clause in S starting a new string or because it was stopped by calling Algorithm
Finish in Algorithms Choose2, Choose3, or Choose5.

Since we are interested in a lower bound of the probability that a certain leaf
containing an instance I is reached, we need to multiply all the probabilities of the
random choices the algorithm has taken to reach the leaf. Thus we disassemble
µ(I) into a product of factors µP for an instance I:

µ(I) :=
∏
P∈Ψ

µ
|I(P)|
P

39

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

µP can be calculated as follows. Assume that we have a string S of type P that
is being flushed in Algorithm Finish. Then S has been found by making some
choices in the algorithms. The probability of each taken choice is a weight to be
included in µP .

The first clause of the first string is always generated with weight 1/2 in Algo-
rithm Choose2 called by Algorithm Strings. We postpone this weight to the last
string of all strings found during one loop in Algorithm Strings. So, at first, we
analyze all but the last string found in one loop.

Let S be a non-last string. Consider an n-connection. If it is preceded by an
nn-connection, both together have weight p0q1, else it has weight 1/3 or 1/2. In
contrast, a p-connection always has weight 1/2. When Algorithm Extend fails to
extend the string because of independence, the weight to choose the assignment for
the last clause is always at least 1/3. Let r denote the number of nn, n-connections,
s the number of n-connections not preceded by an nn-connection, and t the number
of p-connections. Then the weight of a non-last string S is at least

(p0q1)
r · (1/3)s · (1/2)t · 1/3

where the last factor 1/3 is for finishing the last clause.
Now, we consider the last string S. At first, assume that the last string is

also an automatic stop type. If it ends with an nn-connection, this has weight
min{p1, p0q0}. In other cases, the last clause was fixed because the right assignment
could be derived from the formula. All other connections are similar to the previous
non-last string case. But, we have to include the initial 1/2. We conclude that if
the string ends with an nn-connection, the weight of S is at least

1/2 · (p0q1)
r · (1/3)s · (1/2)t min{p1, p0q0}

where the first factor 1/2 is the weight postponed from the first string in the loop.
Similarly, if S does not end with an nn-connection, the weight of S is at least

1/2 · (p0q1)
r · (1/3)s · (1/2)t.

Finally, assume that the last string S is a forced stop type. The analysis is
similar to the previous case. On the on hand, if the last connection is an nn-
connection, we have five assignments to choose from when Algorithm Choose3

40

3.5. Local Scheme for Algorithm Strings

calls Algorithm Extend(abc, {abc, ab}). Hence we have that the weight of S is at
least

1/2 · (p0q1)
r · (1/3)s · (1/2)t · 1/5

where the first factor 1/2 is the weight postponed from the first string in the loop.
On the other hand, if the last connection is not an nn-connection, Algorithm
Extend has only to choose from 3 assignments. Then the weight of S is at lest

1/2 · (p0q1)
r · (1/3)s · (1/2)t · 1/3.

Having calculated the µP values, we can now focus on the λP values. We need
to determine a probability distribution PP over the assignments of GP . From the
definition of λP , we have that λP must be a lower bound for E

[
2−dist(β,β∗)

]
for

every satisfying assignment β∗ of GP where the expectation is calculated with
respect to PP(β). Because we would like λP to be as large as possible, we need to
find the distribution PP that maximizes

min
{
E

[
2−dist(β,β∗)

]
|β∗ satisfies GP

}
(3.2)

where the expectation is computed with respect to PP(β). Using the maximizing
PP , we assign to λP the minimum of E

[
2−dist(β,β∗)

]
with respect to all possible

satisfying assignments for GP . Then λP is a lower bound for the expectation for
all β∗ ∈ sat(GP).

Thus we have a classical max-min optimization problem and could form a linear
program and solve it using the Simplex-Method constraining PP to be a probability
distribution, i.e. summing to one and being at least 0 for all assignments. However,
we use a different approach (cf. [17]): Instead of computing max-min, we compute
max-equal, i.e. find a probability distribution so that E

[
2−dist(β,β∗)

]
is equal (and

thus maximal) for all β∗ satisfying GP . This can be done using any linear equation
solver. But, beware that this may yield an invalid PP , i.e. with some negative
values, so we have to check that the computed PP is a valid probability space.
Fortunately, this is true for our string types.

We have built the stop types in a way that a string is stopped as soon as it
is yielding a bound that is below the worst case bound, as mentioned, already

41

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

determined by type (). The probability constants p0, p1, q0, and q1, which affect
the weights of strings involving nn-connections, are set to the following values:

p1 = 61083/250000

p0 = 188917/500000

q1 = 44167/125000

q0 = 80833/125000

We set them this way to get those strings below the worst case bound.
For each string, we can compute cP := (4/3)oP . Due to Proposition 3.3, the

largest of these determines the constant c for the expected running time cnG ·2O(nG)

of our algorithm. Instead of writing formulas for GP , we write only the types, but
each string of such a type can stand for GP .

The string types are separated into two table. Table 3.1 and Table 3.2 contain
the forced stop types, which will be in T . Table 3.3 shows the automatic stop
types. Both tables together can be used to form a local scheme Ψ together with
Algorithm Strings to establish the bound.

42

3.5. Local Scheme for Algorithm Strings

type(SP) nP µP λP cP ≤
(p, p) 7 1/24 243/1739 1.32790
(p, n, p) 9 1/72 2187/27334 1.32773
(p, n, n, p) 11 1/216 729/15904 1.32760
(p, n, n, n) 11 1/324 729/15848 1.32777
(p, n, n, nn) 10 1/180 1215/19894 1.32745
(p, n, nn) 8 1/60 405/3799 1.32755
(p, nn) 6 1/20 27/145 1.32765
(n, p, p) 9 1/72 729/9110 1.32772
(n, p, n, p) 11 1/216 2187/47732 1.32763
(n, p, n, n) 11 1/324 729/15856 1.32780
(n, p, n, nn) 10 1/180 405/6634 1.32748
(n, p, nn) 8 1/60 45/422 1.32753
(n, n, p, p) 11 1/216 2187/47704 1.32759
(n, n, p, n) 11 1/324 729/15856 1.32780
(n, n, p, nn) 10 1/180 1215/19888 1.32743
(n, n, n, p) 11 1/324 729/15848 1.32777
(n, n, n, n) 11 1/486 243/5264 1.32791
(n, n, n, nn) 10 1/270 405/6608 1.32764
(n, n, nn) 8 1/90 135/1262 1.32778
(n, nn, n, p) 10 8343897139

2250000000000
1215/19904 1.32790

(n, nn, n, n, p) 12 8343897139
6750000000000

10935/312692 1.32776
(n, nn, n, n, n) 12 8343897139

10125000000000
3645/103864 1.32789

(n, nn, n, n, nn) 11 8343897139
5625000000000

405/8692 1.32765
(n, nn, n, nn) 9 8343897139

1875000000000
675/8299 1.32777

(nn, n, p, p) 10 8343897139
1500000000000

405/6653 1.32768
(nn, n, p, n) 10 8343897139

2250000000000
405/6634 1.32789

(nn, n, p, nn) 9 8343897139
1250000000000

675/8321 1.32752
(nn, n, n, p) 10 8343897139

2250000000000
1215/19894 1.32787

(nn, n, n, n, p) 12 8343897139
6750000000000

3645/104168 1.32773
(nn, n, n, n, n) 12 8343897139

10125000000000
243/6920 1.32786

(n, nn, n, n, nn) 11 8343897139
5625000000000

405/8692 1.32765
(n, nn, n, nn) 9 8343897139

1875000000000
675/8299 1.32777

(nn, n, p, p) 10 8343897139
1500000000000

405/6653 1.32768
(nn, n, p, n) 10 8343897139

2250000000000
405/6634 1.32789

Table 3.1: Forced Stop Types

43

Chapter 3. Improving Randomized Local Search by Initializing
Strings of 3-Clauses

type(SP) nP µP λP cP ≤
(nn, n, p, nn) 9 8343897139

1250000000000
675/8321 1.32752

(nn, n, n, p) 10 8343897139
2250000000000

1215/19894 1.32787
(nn, n, n, n, p) 12 8343897139

6750000000000
3645/104168 1.32773

(nn, n, n, n, n) 12 8343897139
10125000000000

243/6920 1.32786
(nn, n, n, n, nn) 11 8343897139

5625000000000
225/4826 1.32762

(nn, n, n, nn) 9 8343897139
1875000000000

45/553 1.32774
(nn, n, nn) 7 8343897139

625000000000
25/176 1.32790

Table 3.2: Forced Stop Types, continued

type(SP) nP µP λP c ≤
() 3 1/3 3/7 1.32793
(p) 5 1/6 81/331 1.32688
(p, n) 7 1/18 81/578 1.32700
(p, n, n) 9 1/54 729/9080 1.32702
(n) 5 1/9 27/110 1.32755
(n, p) 7 1/18 81/578 1.32700
(n, p, n) 9 1/54 243/3028 1.32706
(n, n) 7 1/27 9/64 1.32738
(n, n, p) 9 1/54 729/9080 1.32702
(n, n, n) 9 1/81 243/3016 1.32729
(n, nn, n, n) 10 8343897139

1687500000000
135/2204 1.32737

(n, nn, n) 8 8343897139
562500000000

405/3788 1.32745
(n, nn) 6 15270727861

375000000000
45/241 1.32769

(nn, n, p) 8 8343897139
375000000000

405/3799 1.32712
(nn, n, n, n) 10 8343897139

1687500000000
405/6608 1.32733

(nn, n, n) 8 8343897139
562500000000

135/1262 1.32741
(nn, n) 6 8343897139

187500000000
45/241 1.32753

(nn) 4 15270727861
125000000000

15/46 1.32793

Table 3.3: Automatic Stop Types

44

Chapter 4

Derandomization of PPSZ for
Unique-k-SAT

4.1 Introduction

In [13], Paturi, Pudlak, Saks, and Zane proved that for a uniquely satisfiable 3-
CNF formula G, the solution can be found in O (1.3071nG) expected running time
at most, cf. Section 2.2.3. This is the best randomized bound known for Unique-
3-SAT. We refer to their algorithm as the PPSZ algorithm. But paradoxically, the
bound gets worse when the number of solutions increases. Alas, for the general
3-SAT and 4-SAT case, this algorithm achieves expected running time bounds of
O (1.362nG) resp. O (1.476nG) only, which is worse than the best known random-
ized bounds of O (1.3238nG) (cf. [20] or Chapter 5) resp. O (1.474nG) (cf. [8] or
Section 2.4.2).

The best bounds for k-SAT on n variables make excessive usage of random
bits so that enumerating the entire probability space would yield useless bounds,
i.e. much more than O (2n). But, do random bounds really compete with deter-
ministic bounds when the existence of true randomness is not provable? At least,
randomized algorithms often supply a good starting point to develop fast determin-
istic algorithms. For example, the algorithm of Schöning in [23] (cf. Section 2.3.2),
based on randomized local search and restart, yields a bound of O ((2− 2/k + ε)n)

expected running time at most, which has been derandomized in [6] and improved
for k = 3 in [3] to the best known deterministic bounds of O ((2− 2/(k + 1) + ε)n)

for k > 3 resp. O (1.473n) for k = 3, based on limited local search and cover-

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

ing codes (cf. Section 2.3.3). Alas, like so often, the deterministic bound is much
worse than the original randomized one. However, in this chapter, we derandomize
the PPSZ algorithm for the uniquely satisfiable case yielding (almost) the same
bound as the randomized version making it the best known deterministic bound
for Unique-k-SAT.

We use the Method of Small Sample Spaces (cf. [1]) to prove that the algorithm
can be adapted to enumerate some small probability space yielding a deterministic
running time which equals to the former expected running time up to a subexpo-
nential factor. Moreover, this means that the best bound for Unique-3-SAT is not
only a deterministic one, but also better than the best known randomized bound
for 3-CNF formulas with ‘many’ solutions, cf. Chapter 5.

4.2 Method of Small Sample Spaces

Before we discuss the derandomization of the PPSZ algorithm, we deal with the
Method of Small Sample Spaces.

To prove the existence of a combinatorial structure with some desired proper-
ties, one may construct a finite probability space and prove that a random element
from this probability space has all the desired properties with positive probability.
Since the probability that we may select such an element is positive, there must
exist such an element. This is well known as the Probabilistic Method. The first
application is due to Szele in 1943, e.g. see [1, Chapter 2]. Starting in 1947, Erdös
applied this method to a number of problems and he can be called the Pioneer of
the Probabilistic Method.

Furthermore, we can similarly apply this method to another setting. Given a
random variable X on some finite probability space, and let X have expectation
X on this probability space. Then there must exist some outcome of X that is at
least X and some outcome that is at most X.

But, how can we select such an element in a deterministic way? We need to
enumerate the probability space. Since the probability space is finite, we can go
through all elements in the probability space, check the properties, and eventually,
we will find an element satisfying the desired properties. In the worst case, we
have to enumerate the entire probability space. Hence if the probability space is

46

4.2. Method of Small Sample Spaces

vast (e.g. exponential size), this can take a while. But, sometimes, we can reduce
the probability space to another one which is a great deal smaller (e.g. polynomial
size), and thus, we can save a lot of time on the enumeration. This is called the
Method of Small Sample Spaces.

As a simple example, we study the MAX-k-SAT-Problem in short. Given a
k-CNF formula G, let m(G) be the maximum number of clauses that can be simul-
taneously satisfied by some assignment. The problem of selecting an assignment
that satisfies at least m(G) clauses is known as the MAX-k-SAT problem, which
is NP-complete for k ≥ 2.

Assume that every clause in G is made of (exactly) k distinct literals. We
will show that then there is a deterministic polynomial-time algorithm that finds
an assignment that always satisfies at least b(1 − 2−k)|G|c clauses, i.e. at least
b(1 − 2−k)cm(G) since m(G) ≤ |G|. At first, consider the randomized algorithm
shown in Figure 4.1

Algorithm Rand−MkS(CNF G)
1 return an assignment to G uniformly at random

Figure 4.1: Trivial Algorithm for Max-k-SAT

The algorithm looks trivial, but we prove:

Proposition 4.1. For a CNF formula G on n variables, where every clause con-
tains k distinct literals, Algorithm Rand−MkS returns an assignment that satisfies
at least b(1− 2−k)|G|c clauses on the average in expected polynomial time.

Proof. Select an assignment β uniformly at random. For every clause C, let XC

denote the binary random variable indicating whether clause C is satisfied. More-
over, let X denote the random variable that counts the number of clauses satisfied
by β. By linearity of expectation, we have:

E[X] = E

[∑
C∈G

XC

]
=

∑
C∈G

E[XC]

Fix a clause C ∈ G. Because no variable appears twice in C, every literal in C

satisfies C with probability 1/2 independently from each other literal in C. C is
wrong if every literal in C is wrong under β, which happens with probability 2−k.

47

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

Hence we have E[XC] = 1− 2−k. We conclude that

E[X] = |G| ·
(
1− 2−k

)
is true, which finishes the proof.

Now, we will try to derandomize this trivial algorithm in order to select an
assignment that satisfies at least b(1− 2−k)|G|c clauses. Since we expect at least
b(1 − 2−k)|G|c to be satisfied, we could just try all assignments until we find
a sufficient assignment. Alas, this has running time 2nG . But, can we build a
probability space for assignments which is smaller while still having the same
number of satisfied clauses expected for a random assignment?

Looking at the proof of the preceding proposition, we see that each random
variable XC depends only on the assignment of k variables. Thus Theorem 2.1
from [1, Chapter 15] is just what we need:

Theorem 4.2. For every n ≥ w ≥ 1, there exists a probability space Ω(n,w)

of size O
(
nw/2

)
and w-wise independent random variables y1,...,yn over Ω(n,w)

each of which takes 0 or 1 each with probability 1/2. Ω(n, w) can be constructed
in polynomial time.

We define a probability space Ω(G, w) that produces random assignments for G

in the following way. Let vi with i ∈ [nG] denote an arbitrary, but fixed ordering of
vars(G). Instantiate some w-wise independent random binary variables y1,...,ynG

over some fixed Ω(n, w) as denoted in the preceding theorem. The corresponding
random assignment β is obtained by setting β(vi) to yi for every i ∈ [nG]. By this
construction, the following is true:

Corollary 4.3. For |vars(G)| ≥ w ≥ 1, there exists a probability space Ω(G, w) for
random assignments β with the following properties. Ω(G, w) has size O

(
n

w/2
G

)
,

and the assignments in Ω(G, w) can be enumerated in polynomial time. Moreover,
for v ∈ vars(G), β(v) takes 0 or 1 each with probability 1/2. Finally, for every set
V ⊆ vars(G) with |V | ≤ w, all values β(v) for v ∈ V are independent from each
other, i.e. the values of β are w-wise independent.

Using the ‘small’ probability space Ω(G, w), we can derandomize Algorithm
Rand−MkS and obtain the algorithm shown in Figure 4.2.

48

4.3. Algorithm PPSZ Derandomized

Algorithm MkS(k-CNF G)
1 for each assignment β ∈ Ω(nG, k) do
2 if β satisfies at least b(1− 2−k)|G|c clauses then return β

Figure 4.2: Deterministic Algorithm for Max-k-SAT

Proposition 4.4. For a k-CNF formula G on n variables, where every clause
contains k distinct literals, Algorithm MkS returns an assignment that satisfies at
least b(1− 2−k)|G|c clauses in deterministic polynomial time.

Proof. Recall the definition of X and XC in the proof of Proposition 4.1. Since
the values of an assignment in Ω(G, k) are k-wise independent, the analysis for
E[X] with respect to Ω(G, k) is the same as in the proof of Proposition 4.1. Hence
there exists an assignment in Ω(G, k) that satisfies at least b(1− 2−k)|G|c clauses
and that assignment (or some other with the same properties) will be found in
polynomial time by the algorithm.

4.3 Algorithm PPSZ Derandomized

Algorithm dPPSZ(k-CNF G, integer d, integer L, integer t)
1 G := do kd-bounded resolution on G
2 for each π = π(α) with α ∈ Ω(G, ((k − 1)d+1 − 1)/(k − 2), L) do
3 for each bit string b of size t do {
4 G′ := G
5 repeat as long as there is an unused bit in b {
6 v := next unused variable in π
7 if G′ contains a unit clause v or v
8 then G′ := G′|v resp. G′ := G′|v
9 else Choose G′ := G′|v or G′ := G′|v depending on the next unused

bit of b being 1 or 0
10 }
11 if G′ is the empty formula then return true
12 }
13 return false

Figure 4.3: Derandomized Algorithm of Paturi, Pudlak, Saks, and Zane

49

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

In Figure 4.3, we have a derandomized form of the PPSZ algorithm. Note that
π denotes a permutation of the variables of G computed using a polynomial time
function π(α) where α is a member of some set Ω(G, w, L). Both objects will be
introduced during the analysis.

The rest of this chapter will focus on the analysis of this algorithm. Roughly
speaking, we will adapt the original analysis of the PPSZ algorithm where neces-
sary in order to prove the bound for the derandomized version.

The only difference between the PPSZ algorithm and this one is that the PPSZ
algorithm chooses a permutation π of vars(G) and a bit string b of length nG

uniformly at random.

4.4 Analysis of Algorithm dPPSZ

4.4.1 Deterministic Bounds for Unique-k-SAT

Fix some uniquely satisfiable k-CNF formula G. In the algorithm, we use a set
Ω(G, w, L) with w = wk,d := ((k − 1)d+1 − 1)/(k − 2), the set will be defined in
Section 4.4.2. For now, let us use it as a black box probability space that can be
used to draw permutations π of vars(G) at random so that the following lemma
is satisfied, which is proved in Section 4.4.4:

Lemma 4.5. Let d and L be integers and let G be a uniquely satisfiable k-CNF
formula with more than d variables. Fix some variable v of G. Assume that
Algorithm dPPSZ reaches variable v and all variables before v in π were set
according to β. At this step, there will be a unit clause for v with probability at
least λk,d,L with

λk,d,L =
µk

k − 1
− εk,d,L

with

µk =
∞∑

j=1

1

j
(
j + 1

k−1

)
where εk,d,L can be made arbitrary small positive by choosing L and d large enough.

50

4.4. Analysis of Algorithm dPPSZ

With respect to π = π(α) for random α from Ω(G, w, L), let the random set
F contain all variables v for which there is a unit clause for v when the algorithm
processes v. For each variable v, let Fv denote the binary random variable indi-
cating membership of v in F . By the preceding lemma, the probability that Fv is
1 is at least λk,d,L. By linearity of expectatation, we have:

E[F] = E

 ∑
v∈vars(G)

Fv

=

∑
v∈vars(G)

E [Fv]

=
∑

v∈vars(G)

P [Fv = 1]

≥
∑

v∈vars(G)

λk,d,L

= λk,d,LnG

Because we try all elements of Ω(G, w, L), we must encounter at least on permu-
tation π where the number of variables in F is at least λk,d,LnG. Now, assume that
the bit string b is chosen so that all bits used for variables agree with β. But, be-
cause at least bλk,d,LnGc variables are determined using unit clauses, we only need
at most nG−bλk,d,LnGc bits from b. We conclude that if we set t = dnG − λk,d,LnGe,
we will face that good bit string.

Enumerating all bit strings of length t takes time at most O (2t). In Sec-
tion 4.4.2, we will prove that Ω(G, w, L) can be constructed and enumerated in
polynomial time in O

(
n

Lw/2
G

)
which is a polynomial in nG for constant k, d, and

L. CNF formulas which do not satisfy the precondition of Lemma 4.5, i.e. which
have at most d variables, can be solved in polynomial time since d is a constant.
Finally, we can state the main result of this chapter:

Proposition 4.6. For a uniquely satisfiable k-CNF formula G, integers d > 0,
L > 0, and t = dnG − λk,d,LnGe, Algorithm dPPSZ finds the satisfying assignment
in deterministic running time at most

O
(
2(1− µk

k−1)nG+εk,d,LnG

)
where εk,d,L can be made arbitrary small positive by choosing L and d large enough.

51

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

Corollary 4.7. For uniquely satisfiable 3-CNF and 4-CNF formulas on n vari-
ables, the satisfying assignment can be found in deterministic running time at most
O (1.3071n) resp. O (1.4699n).

4.4.2 Small Probability Space for Variable Ordering

The (original) PPSZ algorithm chooses a permutation π uniformly at random, but
in Section 4.4.3, we will see that we need only randomness with respect to a subset
of the variables, which has size bounded by a constant w for the Unique-k-SAT
case. Hence we could just draw nG integers from a finite pool (to have a finite
probability space) of w-wise independent integers and order π according to the
rank of these. But, what do we do if we draw the same integer for two variables?
Fortunately, the bigger the pool is, the less likely it is for two variables to clash.
Guided by this idea, we will discuss a handy construction of π and show some
useful properties. For that, our basic tool is Corollary 4.3.

Let us start with a mapping α which maps each variable in G to a value in [0, 1).
Given α, we construct a permutation π = π(α) of vars(G) so that α(u) < α(v)

implies that u occurs before v in π. Such a permutation can clearly be constructed
in a deterministic way by ordering vars(G) due to the values α takes on them with
some arbitrary deterministic rule if two take the same value.

In order to have a random permutation π that is distributed uniformly on the
set of all possible permutations of vars(G), we need to draw a value α(v) uniformly
at random from [0, 1] (with infinite precision) independently for each v ∈ vars(G).
For two variables u, v ∈ vars(G), the probability that the binary encodings of
α(u) and α(v) differ at the ith bit, but not before, is 2−i. Note that this happens
with positive probability for arbitraily large i. Hence such a probability space is
not derandomizable in finite time. To solve this problem, we approximate [0, 1]

with a large discrete subset, i.e. for fixed L > 0, every α(v) must be encoded using
L bits. Then we have only 2L possible values for each α(v). However, this is
still too much since for n variables, this probability space still has size 2nL if each
α(v) is chosen independent from each other. As noted at the beginning of this
subsection, we only need independence with respect to a small subset of variables,
so Corollary 4.3 provides all we need.

52

4.4. Analysis of Algorithm dPPSZ

We construct a random α in the following way. Define integers w > 0, L > 0.
Now, let Ω1,...,ΩL be independent instances of the probability space Ω(G, w) from
Corollary 4.3.

For each l ∈ [L], let βl denote a random assignment from Ωl. Define

α(v) =
∑
l∈[L]

2−lβl(v)

for variable v ∈ vars(G), i.e. βl(v) is seen as a binary encoding for α(v) with
length L. Let A(L) be the set of all possible rational values α(.) can take. On
the one hand, for fixed v ∈ V , the values of β1(v),...,βL(v) are fully independent
since they are drawn from independent probability spaces. Hence each value in
A(L) has equal probability to be chosen for α(v). On the other hand, for fixed l,
the values of βl are w-wise independent since they are drawn using an instance of
Ω(G, w). Because this holds for every l independently, the values of α are w-wise
independent.

We conclude that the construction above yields w-wise independent values for
α, where each of them is uniformly distributed on A(L). So, let Ω(G, w, L) denote
the probability space for random α as constructed above. We have:

Lemma 4.8. Ω(G, w, L) can be constructed with size O
(
n

Lw/2
G

)
and in polynomial

time in its size.

Proof. By Corollary 4.3, each Ωl has size O
(
n

w/2
G

)
and can be constructed in poly-

nomial time in its size. Ω(G, w, L) is a product of the probability spaces Ω1,...,ΩL.
Thus Ω(G, w, L) has size O

(
n

Lw/2
G

)
and can be enumerated in polynomial time

by enumerating the product space.

Fix some arbitrary v ∈ vars(G) and fix some arbitrary V ⊆ vars(G)− v with
|V | < w. We want to have a lower bound for the probability that a variable u in
V occurs before v in π. The fact that α(u) = α(v) could hold makes the analysis
a little bit complicated because whether u occurs before v in π is arbitrary then.
Fortunately, this is not very likely and the probability for that to happen decreases
with increasing L. Therefore, we call v unique with respect to V if α(u) 6= α(v)

holds for all u ∈ V . Clearly, the probability that v is unique with respect to V is
(1− 2−L)|V | since all values α(u) for u ∈ V + v are independent from each other.

53

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

Now, assume that we already know that v is unique with respect to V . Then
all α(u) for u ∈ V can still be seen as being drawn independently at random from
A(L) − α(v). Again, fix a variable u in V . Under the condition that v is unique
with respect to V , the probability that α(u) < α(v), i.e. that u occurs before v in
π, is equal to α(v) · 2L/(2L − 1). This comes from the fact that we have α(v) · 2L

elements in A(L) which are strict less than α(v) and because the condition allows
all 2L − 1 elements of A(L) −α(v) to be chosen for α(u) uniformly at random. Let
us sum up:

Lemma 4.9. Let v ∈ vars(G) be a variable and V ⊆ vars(G) be a set of variables
with |V | < w and v 6∈ V . Then the following are true:

1. The probability that v is unique with respect to V is (1− 2−L)|V |.

2. Given that v is unique with respect to V , all α(u) with u ∈ V are independent,
and for each u ∈ V , the probability that α(u) < α(v) holds is equal to α(v) ·
2L/(2L − 1).

4.4.3 Admissible Trees

Before we can go back to Unique-k-SAT, we need the notion of an admissible tree
and have to prove some important properties.

Fix some variable v ∈ vars(G). Let T be a tree where the root is labeled by
v. Each node of the tree can have a label in vars(G) or it is unlabeled. Moreover,
for each path from a leaf to the root, no integer occurs more than once as a label.
Then T is called an admissible tree. The depth of T is the maximum distance from
any leaf to the root, e.g. a tree containing only one node has depth 0. We limit
the depth of an admissible tree to d and we limit the number of children of each
node to k− 1. Then T has at most wk,d nodes. A cut A is a set of nodes that does
not include the root, and every path from the root to a leaf includes a node in A.
Figure 4.4 shows an example of an admissible tree, and moreover, encircled nodes
form a cut.

Let π = π(α) where α is drawn from Ω(n, wk,d, L) at random. We say a cut A

happens if all variables corresponding to labeled nodes of A occur before v in π.
We like to calculate the probability that at least one cut happens with respect to

54

4.4. Analysis of Algorithm dPPSZ

v

a

c d d f

Figure 4.4: Admissible Tree with a Cut

a random permutation. In the example above, the cut happens if c and d appear
before v in π. But, also the cuts {a}, {c, d, f}, or {a, d, f} could happen. If some
node appears after v, then we have to look in the subtree for a cut, e.g. a appears
before v, otherwise c and d have to appear before v. Roughly speaking, taking a
subtree rooted at some node x, a cut in that subtree happens if x appears before
v in π or each of the subtrees rooted at the children of x have a cut happening.
We will formalize this idea in the following.

We say that v is unique with respect to T , if v is unique with respect to the set
of variables occurring as labels in T excluding v. So, given that v is unique with
respect to T and some subtree T0 of T , we denote with QT0(r) the probability that
at least one of the possible cuts of T0 happens and, conveniently, where we use r

to stand for α(v) · 2L/(2L − 1). We will establish a lower bound for QT0(r) :

Lemma 4.10. Given an admissible tree T with root labeled by v, let T0 be some
subtree of T with more than one node, and let T1, ..., Tt be the subtrees rooted at
the labeled children of the root of T0. Let u1, ..., ut be the labels of their roots. Then
it is true that

QT0(r) ≥
t∏

i=1

(r + (1− r)QTi
(r))

holds where the empty product is interpreted as 1.

Proof. 1 Consider the case that t = 0. Since T0 has at least one child, there is a
cut in the tree. Because no child is labeled, the cut is empty, which corresponds
to an empty event, which occurs with probability 1.

1Note that this proof is almost the same like the one for Lemma 4 in [13], which can be found
in [15].

55

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

Hence, we assume t ≥ 1. Let U be the set of variables occurring as labels in
T . Since |U | ≤ wk,d and since we have chosen α from Ω(n,wk,d, L), we can apply
Lemma 4.9 using U − v for V . Thus we have that the probability of α(ui) < α(v)

is equal to r = α(v) · 2L/(2L − 1) since v is unique with respect to T .
Consider the event that α(ui) < α(v) holds and the event that a cut in Ti

happens. Because a subtree of an admissible tree is also admissible, ui does not
occur anywhere else in Ti. Hence both events are independent, causing their union,
denoted with Ki, to have probability r + (1− r)QTi

(r).
To finish the proof, we have to show that P[

⋂t
i=1 Ki] ≥

∏t
i=1 P[Ki]. At first,

let us recall some standard correlation inequality, which is a special case of the
FKG-inequality (cf. Theorem 3.2 in [1, Chapter 6]):

Lemma 4.11. Let N be a finite set and let A and B be two monotone increasing
families of subsets of N , i.e. each super-set of a set in A resp. B is also contained
in A resp. B. Draw a random set M ⊆ N by choosing each u in N independently
with probability p. Then it is true that

P[M ∈ A ∩ B] ≥ P[M ∈ A]P[M ∈ B].

We set N to be the set of all variables occurring as labels in T0, but we exclude
v. Moreover, we determine M as follows. For all u ∈ N , we include u in M if it
occurs before v in π. These events occur independently each with probability r.
Let Wi denote the family of all subsets of N that imply Ki, i.e. all sets of variables
W ⊆ vars(G) for which holds that Ki happens when all u ∈ W occur before v in
π. Because Ki only depends on variables in N , M is a member of Wi if and only
if the event Ki happens. Clearly, Wi is monotone increasing since all supersets of
a set that implies Ki also imply Ki, i.e. more variables than necessary before v in
π is not bad. The set Vi =

⋂i−1
j=1Wi is also monotone increasing. We plug Vi and

Wi as A and B in the lemma and obtain

P[M ∈ Vi+1] ≥ P[M ∈ Vi]P[M ∈ Wi]

≥
∏
j≤i

P[M ∈ Wj].

56

4.4. Analysis of Algorithm dPPSZ

Because M ∈ Vt+1 means that the event
⋂t

i=1 Ki happens, we can conclude
that

P

[
t⋂

i=1

Ki

]
≥

t∏
i=1

P[Ki]

is true, which completes the proof.

Thus we only need to compute the recursion in the lemma for a lower bound
on QT (r). Paturi et al established in Section 3.4 in [13] that

lim
d→∞

∫ 1

0

QT (d)(r
′)dr′ ≥ µk

k − 1

holds where T (d) is an admissible tree of depth d. However, the integral in the
left hand side may be less than the right hand side of the inequality. But, the
limes tells us that for any given ε > 0, we may choose some large dε so that for all
d > dε, the integral is at least µk

k−1
− ε.

Hence we need to express the probability that a cut happens in a way that we
can apply the preceding inequality. In the following, we show that for L tending
to infinity, the uniqueness of v is almost ‘neglectable’. So, let Q′

T (α(v)) denote the
probability that at least one of the possible cut of T happens given that only the
value of α(v) is known with respect to random α ∈ Ω(n, wk,d, L). Comparing to
QT (r), we dropped uniqueness.

We have that

Q′
T (α(v)) = QT

(
α(v) · 2L/

(
2L − 1

))
·
(
1− 2−L

)wk,d

holds since the probability that v is unique with respect to T is equal to (1 −
2−L)wk,d . For L tending to infinity, both factors involving L in the preceding
equation tend to 1. Moreover, QT (.) is a continuous function on [0, 1] (cf. [13]).

So we can conclude that

lim
L→∞

Q′
T (α(v)) = QT (α(v))

holds.
Again, for any ε > 0, we may choose Lε so that for all L > Lε, Q′

T (α(v)) is at
least QT (α(v)) − ε for all α(v) in A(L). So, let Q′

T denote the probability that at

57

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

least one of the possible cuts of T happens for random α ∈ Ω(n, wk,d, L), i.e. α(v)

is also random now.
For L > Lε, we have:

Q′
T =

∑
r′∈A(L)

Q′
T (r′) · P[α(v) = r′]

≥
∑

r′∈A(L)

(QT (r′)− ε) · 2−L

≥
∑

r′∈A(L)

QT (r′) · 2−L − ε

≥ 2−L

2L−1∑
l=0

QT

(
l/2L

)
− ε

For L tending to infinity, we have:

lim
L→∞

Q′
T ≥ lim

L→∞

2L−1∑
l=0

QT

(
l/2L

)
− ε

≥
∫ 1

0

QT (r′)dr′ − ε

Clearly, by choosing a large L, we can get Q′
T arbitrary close to the right hand

side of the inequality. Thus we have proved:

Lemma 4.12. Given an admissible tree T of depth d, the probability that at least
one of the possible cuts of T happens is at least λk,d,L with

λk,d,L =
µk

k − 1
− εk,d,L

where εk,d,L can be made arbitrary small positive by choosing L and d large enough.

4.4.4 Critical Clause Trees

Now, let us draw the connection between Unique-k-SAT and our abstract admis-
sible trees.

We call a clause C ∈ G a critical clause for v if the only true literal in C with
respect to β is the one corresponding to v, i.e. flipping the value assigned to v in
β would make C instantly false.

58

4.4. Analysis of Algorithm dPPSZ

Algorithm dPPSZ applies kd-bounded resolution to G and then steps through
the variables ordered by a permutation π. Assume that the bit string b is chosen
so that all bits used for variables agree with β. When the algorithm reaches a
variable v and there is a critical clause C for v so that the variables vars(C)− v

occur before v in π, C has been reduced to a unit clause for v so that the algorithm
can immediately determine the right assignment to v. But, when is there a clause
C meeting this condition? We need the notion of a critical clause tree.

We call an admissible tree T with root labeled by v a critical clause tree for v

if for each cut A of T , there exists a critical clause for v in G where vars(C)− v

contains only variables which occur as labels in A.
An example of a critical clause tree follows. Consider a 3-CNF formula G that

is satisfied if and only if 0 is assigned to all variables. Let vab, acd, and bde be
clauses in G. Then the tree shown in Figure 4.5 is a critical clauses tree for v with
depth two.

v

a b

c d d e

Figure 4.5: Critical Clause Tree for v

Clearly, every cut in the tree corresponds to a critical clause in G after we
applied 9-bounded resolution. For example, the cut {c, d, b} corresponds to clause
acdb which can be derived by resolving vab with acd. Indeed, the existence of such
a critical clause tree for a sufficient large formula is guaranteed by Lemma 2 in
[13]:

Lemma 4.13. Let G be a uniquely satisfiable k-CNF formula with more than d

variables. Apply kd-bounded resolution to G. For each v ∈ vars(G), there exists a
critical clause tree for v with depth d.

We conclude that if a cut of a critical clause tree of v happens with respect to π,
there must be a critical clause C corresponding to that cut meeting the condition.

59

Chapter 4. Derandomization of PPSZ for Unique-k-SAT

By Lemma 4.12, this has probability at least λk,d,L, and finally, we have proved
what was claimed in Lemma 4.5.

4.5 Conclusion

We derandomized the uniquely satisfiability case of the PPSZ algorithm using an
approximation of the uniform distribution on [0, 1] using a discrete subset of [0, 1]

and showed that we can come arbitrary close to the randomized bound by making
the discrete subset large enough.

We can also conclude that a sufficient pseudo-random number generator can be
used for the PPSZ algorithm instead of true randomness for the unique satisfiability
case.

60

Chapter 5

Improved Bound for the
PPSZ/Schöning-Algorithm for
3-SAT

5.1 Introduction

Using an elegant-simple random-walk algorithm, Schöning showed in 1999 that a
satisfying assignment for a satisfiable 3-CNF formula G can be found in
O ((4/3 + ε)nG) expected running time, cf. Section 2.3.2 or [23].

In [13], Paturi, Pudlak, Saks, and Zane proved that for a uniquely satisfiable 3-
CNF formula G, the solution can be found in O (1.3071nG) expected running time
at most. We refer to their algorithm as the PPSZ algorithm, cf. Section 2.2.3.
This is the best randomized bound known for Unique-3-SAT and it is possible to
derandomize it, essentially yielding the same bound deterministically, cf. Chap-
ter [19]. But paradoxically, the bound gets worse when the number of solutions
increases.

In 2004 in [8], Iwama and Tamaki combined both algorithms and were able
to prove a randomized bound of O (1.3238nG) for 3-SAT for the combined algo-
rithm. The algorithm was already presented in Section 2.4.2. Up to now, this was
best known randomized bound for 3-SAT. Their bound automatically improves to
O (1.32266nG) by modifying their analysis to use the latest bound for the PPSZ
algorithm that was presented in Corollary 14 in [15]. However, we tune the bound
to improve their result to O (1.32216nG).

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

5.2 The Analysis

5.2.1 Main Result

Iwama and Tamaki proved in [8] that the expected number of repetitions of
COMB(G, d) is O (1.3238nG) (resp. O (1.32266nG) as noted in the introduction)
for a satisfiable 3-CNF formula G and some large but fixed d. We improve that
result to:

Proposition 5.1. For a satisfiable 3-CNF formula G and some large but fixed d,
the expected number of repetitions of COMB(G, d) is O (1.32216nG).

In Section 5.2.2, we show how to disassemble the analysis for the combined
algorithm into two separate ones. We provide bounds for both algorithms in
Section 5.2.3 resp. Section 5.2.4. After that, we combine the bounds for both
algorithm to prove the main result in 5.2.5. Finally, we consider some technical
details in Section 5.2.6 and 5.2.7 that were left out in Section 5.2.4.

5.2.2 Disassembling COMB

For a set of variables D ⊆ vars(G) and some assignment β of G, we define the set
B(D, β) to be the set of all assignments that agree with β on at least the variables
in D, i.e. the subcube of the solution space where the variables in D are fixed to
their values according to β and the others take all possible combinations.

For example, assume vars(G) = {a, b, c, d}, D = {a, b} and let β assign 0 to
all variables in vars(G). Then B(D, β) contains the following assignments:

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

From [15], we know:

Lemma 5.2. For a satisfiable k-CNF formula G, there exists a family of sets
of variables (Dβ : β ∈ sat(G)) so that the family of the corresponding subcubes

62

5.2. The Analysis

(B(Dβ, β) : β ∈ sat(G)) partitions the solution space (i.e. covering completely
while being pairwise distinct). Moreover, it is true that∑

β∈sat(G)

2−|Dβ | = 1.

Proof. We show how to construct such a family of sets of variables. At first, we
construct a sequence of binary trees Ti. Each node in the tree is labeled with a set
of assignments, and each edge in the tree is labeled by a variable.

Start with a tree T0 consisting of one node labeled by sat(G). Note that we
keep the invariants that every node is labeled by a non-empty set of assignments
and that on every path from the root to a leaf no variable occurs twice as an edge
label.

Having constructed Ti−1, if all leaves are labeled by a set of assignments of
cardinality one, then stop. Otherwise, let b be a leaf with label A where |A| 6= 1.
By the invariant A 6= ∅, |A| ≥ 2 holds. Then there must be a variable v ∈ vars(G)

and two assignments β0, β1 ∈ A so that β0(v) = 0 and β1(v) = 1. Let v be such a
pivot variable. We partition A in two sets A0 and A1 where A0 gets all assignments
β ∈ A with β(v) = 0 and A1 all with β(v) = 1. Because β0 ∈ A0 and β1 ∈ A1

holds, both sets are not empty. To obtain Ti from Ti−1, give b one child labeled
with A0 and one labeled with A1. Moreover, label both new edges with variable v.
Clearly, all assignments in A0 assign the same value to v, so v will never be chosen
again as a pivot variable, i.e. the first invariant is kept. Since the same holds for
A1, the second invariant is sustained, i.e. no variables occurs twice as edge label
on a path from the root to a leaf.

In the final tree T , every leaf is labeled by a set containing exactly one satisfying
assignment for G. Moreover, every two leaves are labeled by distinct sets. For
every β ∈ sat(G), we define Dβ to be the set of variables occurring as labels on
the edges from the leaf bβ containing {β} as label to the root. Since no variable
occurs twice on such a path, |Dβ| is equal to the depth of bβ (root has depth 0).
Thus

∑
β∈sat(G) 2−|Dβ | = 1 can be proved by reverse induction since it is the sum

of 2−db over all leaves b where db is the depth of b.
Hence, it is left to prove that the family of subcubes B(Dβ, β) partitions the

solution space. By induction, we prove that for every Ti, the leaves induce a family

63

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

of partitioning subcubes in the following way. For every leaf b in T , we set Db to
be the set of all variables occurring as edge labels from the path from b to the
root. Furthermore, let βb be an arbitrary assignment in the set used as label in b.
Then, we assign subcube B(Db, βb) to b.

For T0, we have one leaf b and Db = ∅. Thus the claim holds for T0. So, let the
result hold for non-final Ti−1 and let b be the node used in the tree-construction
process. Let b1 and b2 be the children added to b in order to obtain Ti from
Ti−1. Clearly, the subcubes B(Db1 , βb1) and B(Db2 , βb2) are disjoint and the union
of both equals to B(Db, βb). Thus the claim holds for Ti. This finishes the proof
since the family B(Dβ, β) in the final tree is the same as B(Db, βb) with b = bβ.

So, throughout the rest of this chapter, fix (Dβ) to be some arbitrary such
family, and let (Bβ) be the corresponding subcubes.

For some β∗ ∈ sat(G), let β be drawn uniformly at random from β ∈ Bβ∗ .
Then the success probability of Algorithm COMB is at least

max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]}

where PPSZ and SCH denote the events that Algorithm PPSZ(G, d, β) resp.
SCH(G, β) return some satisfying assignment. For a random β, the probability
that β ∈ Bβ∗ holds is equal to 2−|Dβ∗ |. Observe that β is still distributed uniformly
on Bβ∗ . To get the success probability, we just sum up the success probabilities
over all subcubes. Hence Algorithm COMB succeeds with probability at least

∑
β∗∈sat(G)

2−|Dβ∗ | ·max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]}

≥ min
β∗∈sat(G)

max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]}.

The inequality follows because we know that
∑

β∗∈sat(G) 2−|Dβ∗ | = 1.
Therefore, to have a lower bound on the success probability, we can focus

on computing a lower bound for the success probability given a single satisfying
assignment β∗ and its subcube. Hence, fix some β∗ ∈ sat(G), B = Bβ∗ , D = Dβ∗ ,
and N = vars(G) \D to the end of this chapter.

64

5.2. The Analysis

5.2.3 Bound for SCH

Schöning’s Algorithm was already discussed in Section 5.2.3. Given a probability
distriuition P for assignments and a satisfying assignment β∗ of a satisfiable k-
CNF formula G, Corollary 2.4 states that the success probability of Algorithm
SCH is at least

E
[
(k − 1)−dist(β,β∗)−o(nG)

]
where the expectation is calculated with respect to P (β).

Conditioning on β ∈ Bβ∗ , we know that β agrees with β∗ on D, whereby the
assignment to N is uniformly distributed. So we have that

P [SCH : β ∈ Bβ∗]

≥ E
[
(k − 1)−dist(β,β∗)−o(nG) : β ∈ Bβ∗

]
= 2−o(nG)

∏
v∈N

(P[β(v) = β∗(v)] · (k − 1)0 + P[β(v) 6= β∗(v)] · (k − 1)−1)

= 2−o(nG)
∏
v∈N

(1/2 · (k − 1)0 + 1/2 · (k − 1)−1)

= (2− 2/k)−|N |−o(nG)

= (2− 2/k)−nG+|D|−o(nG)

= 2−σk(nG−|D|)−o(nG)

where σk = log2(2− 2/k).
Obviously, the success probability of Algorithm SCH increases with increasing

|D| as shown by the graph in Figure 5.1 for k = 3.

5.2.4 Bound for PPSZ

Let us define a nice distribution H. H is a nondecreasing, continuous mapping from
[0, 1] to [0, 1] with H(0) = 0 and H(1) = 1. Moreover, it must be differentiable in
all but at most a finite number of points. Finally, its derivate h must be uniformly
bounded on [0, 1]. We set

βH =

∫ 1

0

h(r) log2(h(r)) dr

γH =

∫ 1

0

min{H(r)k−1, Rk(r)} dr

65

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.2 0.4 0.6 0.8 1

c

|D|/n

Figure 5.1: Basis c for Running Time O (cn) of SCH

where Rk(r) is the smallest non-negative x that satisfies fk(x, r) = x with fk(x, r) =

(r + (1− r)x)k−1.
We will prove:

Lemma 5.3. The probability that Algorithm PPSZ finds a satisfying assignment
given β ∈ Bβ∗ is at least

2−βH |D|−(1−γH)(nG−|D|)−εnG−o(nG)

where ε can be made arbitrary small positive by choosing d large enough.

Of course, H is only a parameter in the analysis, it actually does not change
the success probability of Algorithm PPSZ. However, βH and γH are subject to
H. Hence choosing H affects the upper bound on the number of repetitions needed
for Algorithm PPSZ in terms of |D|/nG as shown in Figure 5.2.

The graphs were computed using Hθ(r) = min{1, r/θ} and using k = 3. These
nice distributions are analyzed in more detail in Section 5.2.7.

For k = 3, we are not able to find H in such a way that the success probability
does not decrease for small |D|. But, we will see that we can tweak H so that the
bound does not decrease too much until Schöning’s can take over.

66

5.2. The Analysis

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

c

|D|/n

θ = 0.5
θ = 0.6
θ = 0.7
θ = 0.8
θ = 0.9

Figure 5.2: Basis c for Running Time O (cn) of PPSZ

5.2.5 Reassembling COMB

We saw that the bound for SCH and the bound for PPSZ depend on |D|, where
the first increases with increasing |D| and the second decreases with increasing |D|
if H is chosen appropriately. Hence we have to find the ‘worst’ |D|. Clearly, the
worst case |D| is attained when max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]} is
minimized.

Assuming that we have a distribution H so that the success probability of
PPSZ decreases with increasing |D|, we can compute the worst |D| since the
success probability of SCH increases with increasing |D|. Thus

max{P[PPSZ : β ∈ Bβ∗],P[SCH : β ∈ Bβ∗]}

is minimized if

σk(nG − |D|) + o (nG) = βH |D|+ (1− γH)(nG − |D|) + o (nG)

|D| = nG
σk − 1 + γH

σk − 1 + γH + βH

+ o (nG)

holds.
We have proved:

67

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

Proposition 5.4. Let H be a nice distribution so that the bound for PPSZ de-
creases with |D|, and let

δ =
σk − 1 + γH

σk − 1 + γH + βH

be well defined with 0 ≤ δ ≤ 1. For a satisfiable k-CNF formula G, the success
probability of Algorithm COMB(G, d) is at least

2−σk(1−δ)nG−εnG−o(nG)

where ε can be made arbitrary small positive by choosing d large enough.

In Section 5.2.7, we will provide some H3 with βH3 ≤ 0.90925, γH3 ≥ 0.61229,
and thus δ3 ≥ 0.02927. Therefore, we have a lower bound of Ω (1.32216−nG) for
the success probability of COMB for a satisfiable 3-CNF formula G. This finishes
the proof of the main result, Proposition 5.1.

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

c

|D|/n

SCH
PPSZ

Figure 5.3: Basis c for Running Times O (cn) of PPSZ and SCH

The graph in Figure 5.3 shows the running time of the individual algorithms
in terms of |D|/nG. Note that the running time of the combined algorithms is the
minimum of both.

As shown in the picture, the bound is worst when |D| is about δ3 · n.

68

5.2. The Analysis

5.2.6 Proof of the PPSZ Bound

At first, we have to recapitulate some technical features around the PPSZ algo-
rithm, some of which have been dismissed from the latest version of [15] because
they are not necessary anymore by their analysis, but we need them for this one.1

For some permutation π, let F (π) denote the set of variables in N that have
been reduced to unit clauses during a run of Algorithm PPSZ. When β agrees
with β∗ on the variables in vars(G) \F (π), the algorithm will find β∗. Given that
β ∈ Bβ∗, we know that β and β∗ already agree on D. Thus we have:

P[PPSZ : β ∈ Bβ∗] ≥ 2−N · E
[
2F (π)

]
In order to have a good bound on the expectation, we will choose some subset Γ

of the permutation space and compute instead:

P[PPSZ : β ∈ Bβ∗] ≥ 2−N · P[π ∈ Γ] · E
[
2|F (π)| : π ∈ Γ

]
A placement α is a function that maps each variable to a real value in [0, 1].

With π(α), we denote the permutation obtained by ranking the variables of G due
to the values α takes on them with some arbitrary rule for breaking ties. Hence a
uniform distribution of α(.) yields a uniform distribution of π(α(.)).

Let v be a variable in N . For a set of placements Γ, we define QΓ(r) to be the
probability that v is in F (π(α)) where α is a random placement from Γ having
α(v) = r. Then we have:

P[v ∈ F (π(α)) : α ∈ Γ] ≥ QΓ =

∫ 1

0

QΓ(r) dr

For every λ ∈ [0, 1), we consider the set of placements ΓH,λ,D to be the set of
all placements where for each r ∈ [λ, 1], at least H(r)|D| variables v ∈ D have
α(v) < r.

From Lemma 26 in the old version of [15], we know that:

Lemma 5.5. Define the recursive function Qd
k(r) by Q0

k(r) = 0 and Qd
k(r) =

fk(Q
d−1
k (r), r) for d > 0. For Γ = ΓH,λ,D and r ∈ [λ, 1], it is true that

QΓ(r) ≥ min{H(r)k−1, Qd
k(r)} − ρ(H(r))

1An older version of [15] is still available in the citeseer-cache at
http://citeseer.ist.psu.edu/paturi98improved.html.

69

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

where ρ(x) = 0 for x ∈ {0, 1} and ρ(x) = min
{

k2d

|A|

(
1

x(1−x)

)
, 1

}
for x ∈ (0, 1).

We compute QΓ for Γ = ΓH,λ,D:

QΓ =

∫ 1

0

QΓ(r) dr

≥
∫ 1

λ

QΓ(r) dr

≥
∫ 1

0

(min{H(r)k−1, Qd
k(r)} − ρ(H(r))) dr − λ

≥
∫ 1

0

min{H(r)k−1, Qd
k(r)} dr −

∫ 1

0

ρ(H(r)) dr − λ

Paturi et al evaluated
∫ 1

0
ρ(H(r)) dr to be o (1) when |D| ≥

√
nG as nG tends

to infinity. We omit the analysis for |D| ≤
√

nG here since it is very likely for less
than

√
nG variables to appear at the very beginning of the permutation π before all

variable in N . For those, Paturi et al showed that QΓ ≥
∫ 1

0
Qd

k(r). We conclude:

QΓ ≥
∫ 1

0

min{H(r)k−1, Qd
k(r)} dr − o (1)− λ

In Proposition 3 in [13], they also show that Qd
k(r) converges to Rk(r) for every

r ∈ [0, 1]. Hence for every small positive ε, there exists a large dε so that for every
d ≥ dε, Qd

k(r) ≥ Rk(r)− ε is true for all r ∈ [0, 1]. We conclude that

QΓ ≥
∫ 1

0

min{H(r)k−1, Rk(r)− ε} dr − λ− o (1)

≥
∫ 1

0

min{H(r)k−1, Rk(r)} dr − ε− λ− o (1)

is true.
For the reader familiar with the details of [15], it is noticable that we have

just proved a generalized version of Lemma 24 in the old version of [15]. In
that lemma, they restricted H(r) to be at most Rk(r)

1/(k−1). The corresponding
lemma in the latest version, Lemma 13 in [15], does not make use of any function
H at all. Nevertheless, comparing the details, the new lemma looks like using
H(r) = min{r · (k − 1)/(k − 2), 1} in the old one. But, that H violates the
(unnecessary) restriction H(r) ≤ Rk(r)

1/(k−1). Therefore, in the proof above, we
only unified both approaches.

70

5.2. The Analysis

Since we have computed QΓ, we can consider the expected number of variables
that will be in F (π(α)):

E
[
2|F (π(α))| : α ∈ ΓH,λ,D

]
≥ 2E[|F (π(α))|:α∈ΓH,λ,D]

≥ 2γH |N |−ε|N |−λ|N |−o(|N |)

Thus we conlude:

P[PPSZ : β ∈ Bβ∗] ≥ P[α ∈ ΓH,λ,D] · 2−(1−γH)|N |−ε|N |−λ|N |−o(|N |)

For P[α ∈ ΓH,λ,D], Paturi et al proved a nice lower bound, cf. Lemma 23 in the
old version of [15]:

Lemma 5.6. For λ > 0, it is true that

P[α ∈ ΓH,λ,D] ≥ 2−βH |D|−o(|D|).

Because ε and λ are both arbitrary small positive values, we have

P[PPSZ : β ∈ Bβ∗] ≥ 2−βH |D|−(1−γH)(nG−|D|)−ε′nG−o(nG),

where ε′ is some arbitrary small positive real. This finishes the proof of Lemma 5.3.

5.2.7 Optimized Nice Distributions for 3-SAT

By Proposition 5.4, the running time bound depends on the choice of some H

which produces a large δ. Experiments showed that we should consider functions
H where there is some r0 ≤ 1/2 with H(r)2 ≥ R3(r) for r ≤ r0 and H(r)2 ≤ R3(r)

for r ≥ r0. In this case, we have:

γH =

∫ r0

0

R3(r) dr +

∫ 1

r0

H(r)2 dr

For r ∈ [0, 1/2], we have:

R3(r) =
r2

(1− r)2∫ r

0

R3(r
′) dr′ = 2 ln(1− r)− 1 +

r2 − r − 1

r − 1

71

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

As a simple example, we consider the function Hθ(r) = min{1, r/θ} for some
θ ∈ [1/2, 1]. Firstly, for r ∈ [0, 1 − θ], we have Hθ(r)

2 ≥ R3(r). Secondly,
for r ∈ [1 − θ, θ], we have Hθ(r)

2 ≤ R3(r), and finally, for r ∈ [θ, 1], we have
Hθ(r)

2 = R3(r) = 1. Hence the following holds:

γHθ
=

∫ 1−θ

0

R3(r) dr +

∫ θ

1−θ

Hθ(r)
2 dr + 1− θ

=
6 ln(θ)θ2 + 6 θ − 4 θ3 − 1

3 θ2

βHθ
=

∫ θ

0

1

θ
log2

(
1

θ

)
dr

= − log2(θ)

We insert this into the formula for δ in Proposition 5.4 and compute the root
of the derivate with respect to θ to get the optimal θ = 0.5109968782. For this
θ, we get βHθ

≤ 0.9686136176, γHθ
≥ 0.613242472, and thus δ ≥ 0.028368. This

yields an upper bound of O (1.3225nG) for the expected number of repetitions of
Algorithm COMB.

But, we can do better. In order to find an optimal H, we can set up a continuous
function H consisting of linear pieces and try to optimize it until we hit the best
result. Experiments showed that the resulting curve is perfectly resembled by the
following function, with some appropriate parameters a and b:

H(r) =

{
r/θ if r ∈ [0, 1− θ)

1− (−a ln(r))b if r ∈ [1− θ, 1]

h(r) =
dH

dr
=

{
1/θ if r ∈ [0, 1− θ)

−b (−a ln(r))b

r ln(r)
if r ∈ [1− θ, 1)

H(r) must be continuous, and naturally, it should also be differentiable com-
pletely. Moreover, we propose that H(r) should hit R3(r)

1/2 exactly when the
linear part finishes, i.e. at 1− θ since R3(r)

1/2 = r/(1− r) for r ∈ [0, 1/2]. Using
these constraints, i.e.

H(1− θ) = R3(1− θ)1/2 and

h(1− θ) = 1/θ,

72

5.2. The Analysis

we can eliminate a and b:

a = −
(

2 θ − 1

θ

) 2 θ−1
ln(1−θ)(θ−1)

(ln (1− θ))−1

b =
ln (1− θ) (θ − 1)

2 θ − 1

For the antiderivative of h(r) log h(r), we have

β1(r) = −r log θ

θ
+ C

for r ∈ [0, 1− θ) and

β2(r) =
−(−a ln r)b

(
b ln r − b2 + 1 + (b + b2) ln

(
− (−a ln r)bb

r ln r

))
(b + b2) ln 2

+ C

for r ∈ [1 − θ, 1). Observe that β2(r) is not defined for r = 1. However, when r

approaches 1−, then β2(r) tends to C. We have:

βH =

∫ 1

0

h(r) log h(r) dr

= β1(1− θ)− β1(0) + lim
r→1−

β2(r)− β2(1− θ)

= β1(1− θ)− β1(0)− β2(1− θ)

For the antiderivative of H(r)2, we have

γ2(r) = r − 2Γ(1 + b,− ln r) · ab + Γ(1 + 2b,− ln r) · a2b

for r ∈ [1 − θ, 1] where Γ(a, x) is the (upper) incomplete gamma function. For
r ∈ [0, 1− θ), we need the antiderivative of R3(r), which is

γ1(r) = 2 ln(1− r) +
r2 − r − 1

r − 1
+ C.

Since H(r)2 ≥ R3(r) for r ∈ [0, 1 − θ] and H(r)2 ≤ R3(r) for r ∈ [θ, 1], we
conclude:

γH =

∫ 1−θ

0

R3(r) dr +

∫ 1

1−θ

H(r)2 dr

= γ1(1− θ)− γ1(0) + γ2(1)− γ2(1− θ)

73

Chapter 5. Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT

To find θ so that δ in Proposition 5.4 is maximized, we just insert the terms for
γH and βH in the formula for δ and find the optimum with respect to θ. Numerical
optimization yields that δ is maximized using:

θ = 0.5111885981...

a = 1.1437170697...

b = 15.635592073...

βH ≤ 0.9062404894

γH ≥ 0.6122939734

δH ≥ 0.0292762355

2σ3(1−δH) ≤ 1.3221508262

This yields an upper bound of O (1.32216nG) for the expected number of repe-
titions of Algorithm COMB. The graphs in Figure 5.4 and Figure 5.5 show H(r)2

and R3(r) resp. H(r) and R3(r)
1/2.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

r

H(r)2

R3(r)

Figure 5.4: H(r)2 and R3(r)

74

5.2. The Analysis

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

r

H(r)

R3(r)1/2

Figure 5.5: H(r) and R3(r)
1/2

75

Bibliography

[1] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[2] Sven Baumer and Rainer Schuler. Improving a probabilistic 3-SAT algorithm
by dynamic search and independent clause pairs. In Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 150–161, 2003.

[3] Tobias Brueggemann and Walter Kern. An improved deterministic local
search algorithm for 3-SAT. Theoretical Computer Science (TCS), 329:303–
313, 2004.

[4] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan
Paturi. The complexity of unique k-SAT: An isolation lemma for k-CNFs.
In Proceedings of the 18th Annual IEEE Conference on Computational Com-
plexity (CCC), pages 135–141, 2003.

[5] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing (STOC),
pages 151–158, 1971.

[6] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon
Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, and Uwe Schön-
ing. A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local
search. Theoretical Computer Science (TCS), 289:69–83, 2002.

[7] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In Pro-
ceedings of the 14th Annual IEEE Conference on Computational Complexity
(CCC), pages 237–240, 1999.

Bibliography

[8] Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In Pro-
ceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 328–328, 2004.

[9] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science (TCS), 223:1–72, 1999.

[10] Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than
2n steps. Discrete Applied Mathematics, 10:287–295, 1985.

[11] Christos H. Papadimitriou. On selecting a satisfying truth assignment. In
Proceedings of the 32th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 163–169, 1991.

[12] Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Satisfiability coding
lemma. In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science (FOCS), pages 566–574, 1997.

[13] Ramamohan Paturi, Pavel Pudlak, Michael E. Saks, and Francis Zane. An im-
proved exponential-time algorithm for k-SAT. In Proceedings of the 39th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pages
628–637, 1998.

[14] Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Satisfiability coding
lemma. Chicago Journal of Theoretical Computer Science, 1999.

[15] Ramamohan Paturi, Pavel Pudlak, Michael E. Saks, and Francis Zane. An
improved exponential-time algorithm for k-SAT. Journal of the Association
for Computing Machinery (JACM), to appear.

[16] Pavel Pudlak. Satisfiability – algorithms and logic. In Proceedings of the 23rd
International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 129–141, 1998.

[17] Daniel Rolf. 3-SAT ∈ RTIME(1.32971n). Diploma thesis, Department Of
Computer Science, Humboldt University Berlin, Germany, 2003.

78

Bibliography

[18] Daniel Rolf. 3-SAT ∈ RTIME(O(1.32793n)) - improving randomized local
search by initializing strings of 3-clauses. Electronic Colloquium on Compu-
tational Complexity (ECCC), (54), 2003.

[19] Daniel Rolf. Derandomization of PPSZ for Unique-k-SAT. In Proceedings of
the 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT), pages 216–225, 2005.

[20] Daniel Rolf. Improved bound for the PPSZ/Schöning-algorithm for 3-SAT.
Electronic Colloquium on Computational Complexity (ECCC), (159), 2005.

[21] Ingo Schiermeyer. Solving 3-satisfiability in less than 1.579n steps. In Selected
Papers from the 6th Workshop on Computer Science Logic (CSL), pages 379–
394, 1993.

[22] Ingo Schiermeyer. Pure literal look ahead: an O(1.497n) 3-satisfiability algo-
rithm. In Workshop on Satisfiability, pages 63–72, 1996.

[23] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 410–414, 1999.

[24] Uwe Schöning. On the complexity of constraint satisfaction problems. Ulmer
Informatik Berichte Nr. 99-03, Universität Ulm, 1999.

[25] Rainer Schuler, Uwe Schöning, and Osamu Watanabe. A probabilistic 3-SAT
algorithm further improved. In Proceedings of the 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pages 192–202, 2002.

[26] Robert J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, 1996.

Selbständigkeitserklärung

Hiermit erkläre ich, dass

• ich die vorliegende Dissertationsschrift selbständig und ohne unerlaubte Hilfe
verfasst habe;

• ich mich nicht bereits anderwärtig um einen Doktorgrad beworben habe oder
einen solchen besitze;

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fa-
kultät II der Humboldt-Universität zu Berlin bekannt ist.

Daniel Rolf Berlin, den 30. Mai 2006

	Introduction
	Preliminaries
	The Satisfiability Problem
	How Hard Is k-SAT?
	Record Breaking
	Further Research

	Algorithms for k-SAT
	Introduction
	Davis-Putnam Algorithms
	Monien-Speckenmeyer Algorithm
	The Algorithm of Paturi, Pudlak, and Zane
	The Algorithm of Paturi, Pudlak, Saks, and Zane

	Local-Search Algorithms
	Papadimitriou's Algorithm
	Schöning's Algorithm
	Deterministic Local Search

	Davis-Putnam and Local Search
	Schöning's Algorithm and Reduction to 2-SAT
	The Algorithm of Iwama and Tamaki

	Improving Randomized Local Search by Initializing Strings of 3-Clauses
	Introduction
	Combining Algorithm SCH with a Randomized Solver
	Unit Clause Propagation
	Randomized Solver Using Strings
	Local Scheme for Algorithm Strings

	Derandomization of PPSZ for Unique-k-SAT
	Introduction
	Method of Small Sample Spaces
	Algorithm PPSZ Derandomized
	Analysis of Algorithm dPPSZ
	Deterministic Bounds for Unique-k-SAT
	Small Probability Space for Variable Ordering
	Admissible Trees
	Critical Clause Trees

	Conclusion

	Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT
	Introduction
	The Analysis
	Main Result
	Disassembling COMB
	Bound for SCH
	Bound for PPSZ
	Reassembling COMB
	Proof of the PPSZ Bound
	Optimized Nice Distributions for 3-SAT

